GPER

From Wikipedia, the free encyclopedia
  (Redirected from GPR30)
Jump to: navigation, search
G protein-coupled estrogen receptor 1
Identifiers
Symbols GPER1 ; CEPR; CMKRL2; DRY12; FEG-1; GPCR-Br; GPER; GPR30; LERGU; LERGU2; LyGPR; mER
External IDs OMIM601805 MGI1924104 HomoloGene15855 IUPHAR: 221 ChEMBL: 5872 GeneCards: GPER1 Gene
RNA expression pattern
PBB GE GPR30 210640 s at tn.png
PBB GE GPR30 211829 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 2852 76854
Ensembl ENSG00000164850 ENSMUSG00000053647
UniProt Q99527 Q8BMP4
RefSeq (mRNA) NM_001031682 NM_029771
RefSeq (protein) NP_001035055 NP_084047
Location (UCSC) Chr 7:
1.08 – 1.09 Mb
Chr 5:
139.42 – 139.43 Mb
PubMed search [1] [2]

G protein-coupled estrogen receptor 1 (GPER), formerly referred to as G protein-coupled receptor 30 (GPR30), is a G protein-coupled receptor that in humans is encoded by the GPER gene.[1] GPER is an integral membrane protein with high affinity for estradiol, though not for other endogenous estrogens, such as estrone or estriol, nor for other endogenous steroids, including progesterone, testosterone, and cortisol.[2][3][4][5] However, GPER does show high affinity for aldosterone.[6]

Function[edit]

This protein is a member of the rhodopsin-like family of G protein-coupled receptors and is a multi-pass membrane protein that localizes to the endoplasmic reticulum. The protein binds estradiol, resulting in intracellular calcium mobilization and synthesis of phosphatidylinositol (3,4,5)-trisphosphate in the nucleus. This protein therefore plays a role in the rapid nongenomic signaling events widely observed following stimulation of cells and tissues with estradiol. Alternate transcriptional splice variants that encode the same protein have been characterized.[7] The distribution of GPER is well established in the rodent, with high expression observed in the hypothalamus, pituitary gland, adrenal medulla, kidney medulla and developing follicles of the ovary.[8]

Biological studies[edit]

Female GPER knockout mice display hyperglycemia and impaired glucose tolerance, reduced body growth, and increased blood pressure.[9] Male GPER knockout mice are observed to have increased growth, body fat, increased osteoblast function (mineralization) resulting in higher bone mineral density and trabecular bone volume, and persistent growth plate activity resulting in longer bones.[10]

GPER is expressed in the breasts, and activation by estradiol produces cell proliferation in both normal and malignant breast epithelial tissue.[11][12] However, GPER knockout mice show no overt mammary phenotype, unlike ERα knockout mice, but similarly to ERβ knockout mice.[11] This indicates that although GPER and ERβ play a modulatory role in breast development, ERα is the main receptor responsible for estrogen-mediated breast tissue growth.[11]

GPER is expressed in germ cells and has been found to be essential for male fertility, specifically, in spermatogenesis.[13][14][15][16]

GPER has been found to modulate gonadotropin-releasing hormone (GnRH) secretion in the hypothalamic-pituitary-gonadal (HPG) axis.[16]

GPER and ERα, but not ERβ, have been found to mediate the antidepressant-like effects of estradiol.[17][18][19] Contrarily, activation of GPER has been found to be anxiogenic in mice, while activation of ERβ has been found to be anxiolytic.[20]

There is a high expression of GPER, as well as ERβ, in oxytocin neurons in various parts of the hypothalamus, including the paraventricular nucleus and the supraoptic nucleus.[19][21] It is speculated that activation of GPER may be the mechanism by which estradiol mediates rapid effects on the oxytocin system,[19][21] for instance, rapidly increasing oxytocin receptor expression.[22] Estradiol has also been found to increase oxytocin levels and release in the medial preoptic area and medial basal hypothalamus, actions that may be mediated by activation of GPER and/or ERβ.[22]

Clinical significance[edit]

GPER plays an important role in development of tamoxifen resistance in breast cancer cells.[23]

See also[edit]

References[edit]

  1. ^ O'Dowd BF, Nguyen T, Marchese A, Cheng R, Lynch KR, Heng HH, Kolakowski LF, George SR (Jan 1998). "Discovery of three novel G-protein-coupled receptor genes". Genomics 47 (2): 310–3. doi:10.1006/geno.1998.5095. PMID 9479505. 
  2. ^ Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (Mar 2005). "A transmembrane intracellular estrogen receptor mediates rapid cell signaling". Science 307 (5715): 1625–30. doi:10.1126/science.1106943. PMID 15705806. 
  3. ^ Filardo EJ, Thomas P (Oct 2005). "GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release". Trends in Endocrinology and Metabolism 16 (8): 362–7. doi:10.1016/j.tem.2005.08.005. PMID 16125968. 
  4. ^ Manavathi B, Kumar R (Jun 2006). "Steering estrogen signals from the plasma membrane to the nucleus: two sides of the coin". Journal of Cellular Physiology 207 (3): 594–604. doi:10.1002/jcp.20551. PMID 16270355. 
  5. ^ Prossnitz ER, Arterburn JB, Sklar LA (Feb 2007). "GPR30: A G protein-coupled receptor for estrogen". Molecular and Cellular Endocrinology. 265-266: 138–42. doi:10.1016/j.mce.2006.12.010. PMC 1847610. PMID 17222505. 
  6. ^ Wendler A, Albrecht C, Wehling M (Aug 2012). "Nongenomic actions of aldosterone and progesterone revisited". Steroids 77 (10): 1002–6. doi:10.1016/j.steroids.2011.12.023. PMID 22285849. 
  7. ^ "Entrez Gene: GPR30 G protein-coupled receptor 30". 
  8. ^ Hazell GG, Yao ST, Roper JA, Prossnitz ER, O'Carroll AM, Lolait SJ (Aug 2009). "Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues". The Journal of Endocrinology 202 (2): 223–36. doi:10.1677/JOE-09-0066. PMC 2710976. PMID 19420011. 
  9. ^ Mårtensson UE, Salehi SA, Windahl S, Gomez MF, Swärd K, Daszkiewicz-Nilsson J, Wendt A, Andersson N, Hellstrand P, Grände PO, Owman C, Rosen CJ, Adamo ML, Lundquist I, Rorsman P, Nilsson BO, Ohlsson C, Olde B, Leeb-Lundberg LM (2008). "Deletion of the G protein-coupled Receptor GPR30 Impairs Glucose Tolerance, Reduces Bone Growth, Increases Blood Pressure, and Eliminates Estradiol-stimulated Insulin Release in Female Mice". Endocrinology 150 (2): 687–98. doi:10.1210/en.2008-0623. PMID 18845638. 
  10. ^ Ford J, Hajibeigi A, Long M, Hahner L, Gore C, Hsieh JT, Clegg D, Zerwekh J, Oz OK (August 2010). "GPR30 deficiency causes increased bone mass, mineralization, and growth plate proliferative activity in male mice". J Bone Miner Res 26 (2): 298–307. doi:10.1002/jbmr.209. PMID 20734455. 
  11. ^ a b c Scaling AL, Prossnitz ER, Hathaway HJ (2014). "GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast". Horm Cancer 5 (3): 146–60. doi:10.1007/s12672-014-0174-1. PMC 4091989. PMID 24718936. 
  12. ^ Lappano R, Pisano A, Maggiolini M (2014). "GPER Function in Breast Cancer: An Overview". Front Endocrinol (Lausanne) 5: 66. doi:10.3389/fendo.2014.00066. PMC 4018520. PMID 24834064. 
  13. ^ Carreau S, Bouraima-Lelong H, Delalande C (2011). "Estrogens: new players in spermatogenesis". Reprod Biol 11 (3): 174–93. PMID 22139333. 
  14. ^ Carreau S, Bois C, Zanatta L, Silva FR, Bouraima-Lelong H, Delalande C (2011). "Estrogen signaling in testicular cells". Life Sci. 89 (15-16): 584–7. doi:10.1016/j.lfs.2011.06.004. PMID 21703280. 
  15. ^ Carreau S, Bouraima-Lelong H, Delalande C (2012). "Estrogen, a female hormone involved in spermatogenesis". Adv Med Sci 57 (1): 31–6. doi:10.2478/v10039-012-0005-y. PMID 22440937. 
  16. ^ a b Chimento A, Sirianni R, Casaburi I, Pezzi V (2014). "Role of estrogen receptors and g protein-coupled estrogen receptor in regulation of hypothalamus-pituitary-testis axis and spermatogenesis". Front Endocrinol (Lausanne) 5: 1. doi:10.3389/fendo.2014.00001. PMC 3893621. PMID 24474947. 
  17. ^ Estrada-Camarena E, López-Rubalcava C, Vega-Rivera N, Récamier-Carballo S, Fernández-Guasti A (2010). "Antidepressant effects of estrogens: a basic approximation". Behav Pharmacol 21 (5-6): 451–64. doi:10.1097/FBP.0b013e32833db7e9. PMID 20700047. 
  18. ^ Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN, Nayak TK, Bologa CG, Leitao A, Brailoiu E, Deliu E, Dun NJ, Sklar LA, Hathaway HJ, Arterburn JB, Oprea TI, Prossnitz ER (2009). "In vivo effects of a GPR30 antagonist". Nat. Chem. Biol. 5 (6): 421–7. doi:10.1038/nchembio.168. PMC 2864230. PMID 19430488. 
  19. ^ a b c Xu H, Qin S, Carrasco GA, Dai Y, Filardo EJ, Prossnitz ER, Battaglia G, Doncarlos LL, Muma NA (2009). "Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus". Neuroscience 158 (4): 1599–607. doi:10.1016/j.neuroscience.2008.11.028. PMC 2747636. PMID 19095043. 
  20. ^ Kastenberger I, Lutsch C, Schwarzer C (2012). "Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol". Psychopharmacology (Berl.) 221 (3): 527–35. doi:10.1007/s00213-011-2599-3. PMC 3350630. PMID 22143579. 
  21. ^ a b Choleris E (11 April 2013). Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior. Cambridge University Press. pp. 10–. ISBN 978-0-521-19035-0. 
  22. ^ a b Blaustein JD (8 December 2006). Handbook of Neurochemistry and Molecular Neurobiology: Behavioral Neurochemistry, Neuroendocrinology and Molecular Neurobiology. Springer Science & Business Media. pp. 165–. ISBN 978-0-387-30362-8. 
  23. ^ Ignatov A, Ignatov T, Roessner A, Costa SD, Kalinski T (2010). "Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells". Breast Cancer Research and Treatment 123 (1): 87–96. doi:10.1007/s10549-009-0624-6. PMID 19911269. 

Further reading[edit]

  • Filardo EJ (Feb 2002). "Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer". The Journal of Steroid Biochemistry and Molecular Biology 80 (2): 231–8. doi:10.1016/S0960-0760(01)00190-X. PMID 11897506. 
  • Filardo EJ, Thomas P (Oct 2005). "GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release". Trends in Endocrinology and Metabolism 16 (8): 362–7. doi:10.1016/j.tem.2005.08.005. PMID 16125968. 
  • Bonaldo MF, Lennon G, Soares MB (Sep 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548. 
  • Owman C, Blay P, Nilsson C, Lolait SJ (Nov 1996). "Cloning of human cDNA encoding a novel heptahelix receptor expressed in Burkitt's lymphoma and widely distributed in brain and peripheral tissues". Biochemical and Biophysical Research Communications 228 (2): 285–92. doi:10.1006/bbrc.1996.1654. PMID 8920907. 
  • Feng Y, Gregor P (Feb 1997). "Cloning of a novel member of the G protein-coupled receptor family related to peptide receptors". Biochemical and Biophysical Research Communications 231 (3): 651–4. doi:10.1006/bbrc.1997.6161. PMID 9070864. 
  • Kvingedal AM, Smeland EB (Apr 1997). "A novel putative G-protein-coupled receptor expressed in lung, heart and lymphoid tissue". FEBS Letters 407 (1): 59–62. doi:10.1016/S0014-5793(97)00278-0. PMID 9141481. 
  • Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ (Nov 1997). "Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer". Genomics 45 (3): 607–17. doi:10.1006/geno.1997.4972. PMID 9367686. 
  • Takada Y, Kato C, Kondo S, Korenaga R, Ando J (Nov 1997). "Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress". Biochemical and Biophysical Research Communications 240 (3): 737–41. doi:10.1006/bbrc.1997.7734. PMID 9398636. 
  • Filardo EJ, Quinn JA, Bland KI, Frackelton AR (Oct 2000). "Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF". Molecular Endocrinology 14 (10): 1649–60. doi:10.1210/me.14.10.1649. PMID 11043579. 
  • Filardo EJ, Quinn JA, Frackelton AR, Bland KI (Jan 2002). "Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis". Molecular Endocrinology 16 (1): 70–84. doi:10.1210/me.16.1.70. PMID 11773440. 
  • Ahola TM, Purmonen S, Pennanen P, Zhuang YH, Tuohimaa P, Ylikomi T (May 2002). "Progestin upregulates G-protein-coupled receptor 30 in breast cancer cells". European Journal of Biochemistry / FEBS 269 (10): 2485–90. doi:10.1046/j.1432-1033.2002.02912.x. PMID 12027886. 
  • Ahola TM, Manninen T, Alkio N, Ylikomi T (Sep 2002). "G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells". Endocrinology 143 (9): 3376–84. doi:10.1210/en.2001-211445. PMID 12193550. 
  • Ahola TM, Alkio N, Manninen T, Ylikomi T (Dec 2002). "Progestin and G protein-coupled receptor 30 inhibit mitogen-activated protein kinase activity in MCF-7 breast cancer cells". Endocrinology 143 (12): 4620–6. doi:10.1210/en.2002-220492. PMID 12446589. 
  • Hamza A, Sarma MH, Sarma RH (Jun 2003). "Plausible interaction of an alpha-fetoprotein cyclopeptide with the G-protein-coupled receptor model GPR30: docking study by molecular dynamics simulated annealing". Journal of Biomolecular Structure & Dynamics 20 (6): 751–8. doi:10.1080/07391102.2003.10506892. PMID 12744705. 
  • Kanda N, Watanabe S (Oct 2003). "17Beta-estradiol enhances the production of nerve growth factor in THP-1-derived macrophages or peripheral blood monocyte-derived macrophages". The Journal of Investigative Dermatology 121 (4): 771–80. doi:10.1046/j.1523-1747.2003.12487.x. PMID 14632195. 
  • Kanda N, Watanabe S (Dec 2003). "17beta-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression". The Journal of Investigative Dermatology 121 (6): 1500–9. doi:10.1111/j.1523-1747.2003.12617.x. PMID 14675202. 

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.