Galactooligosaccharide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Galactooligosaccharide.PNG

Galacto-oligosaccharides (GOS), also known as oligogalactosyllactose, oligogalactose, oligolactose or transgalactooligosaccharides (TOS), belong to the group of prebiotics. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by stimulating the growth and/or activity of beneficial bacteria in the colon. GOS occurs in commercially available products such as food for both infants and adults.

Chemistry[edit]

The composition of the galacto-oligosaccharide fraction varies in chain length and type of linkage between the monomer units. Galacto-oligosaccharides are produced through the enzymatic conversion of lactose, a component of bovine milk.

A range of factors come into play when determining the yield, style, and type of GOS produced. These factors include:

  • enzyme source
  • enzyme dosage
  • feeding stock (lactose) concentration
  • origins of the lactose
  • process involved (e.g. free or immobilized enzyme)
  • reaction conditions impacting the processing situation
  • medium composition

GOS generally comprise a chain of galactose units that arise through consecutive transgalactosylation reactions, with a terminal glucose unit. However, where a terminal galactose unit is indicated, hydrolysis of GOS formed at an earlier stage in the process has occurred. The degree of polymerization of GOS can vary quite markedly, ranging from 2 to 8 monomeric units, depending mainly on the type of the enzyme used and the conversion degree of lactose.

Health effects[edit]

Because of the configuration of their glycosidic bonds, galacto-oligosaccharides (GOS) largely resist hydrolysis by salivary and intestinal digestive enzymes.[1] Galacto-oligosaccharides are classified as prebiotics, defined as non-digestible food ingredients that beneficially affect the host by stimulating the growth and/or activity of beneficial bacteria in the colon.[1] The increased activity of these health-promoting bacteria results in a number of effects, both directly by the bacteria themselves or indirectly by the organic acids they produce via fermentation. Examples of effects are stimulation of immune functions, absorption of essential nutrients, and syntheses of certain vitamins.[2][3][4]

Stimulating bacteria[edit]

Galacto-oligosaccharides are a substrate for bacteria, such as bifidobacteria and lactobacilli. Studies with infants and adults have shown that foods or drinks enriched with galacto-oligosaccharides result in a significant increase in bifidobacteria.[1]

Immune response[edit]

Human gut microbiota play a key role in the intestinal immune system.[1] Galacto-oligosaccharides support natural defenses of the human body via the gut microflora,[5] indirectly by increasing the number of bacteria in the gut and inhibiting the binding or survival of Escherichia coli, Salmonella Typhimurium and Clostridia.[6][7] GOS can positively influence the immune system indirectly through the production of antimicrobial substances, reducing the proliferation of pathogenic bacteria.[8][9]

Constipation[edit]

Constipation is a potential problem, particularly among infants, elderly and pregnant women. In infants, formula feeding may be associated with constipation and hard stools.[10] Galacto-oligosaccharides may improve stool frequency and relieve symptoms related to constipation.[11]

See also[edit]

References[edit]

  1. ^ a b c d Jeurink, P. V; Van Esch, B. C; Rijnierse, A; Garssen, J; Knippels, LM (2013). "Mechanisms underlying immune effects of dietary oligosaccharides". American Journal of Clinical Nutrition. 98 (2): 572S–7S. doi:10.3945/ajcn.112.038596. PMID 23824724. 
  2. ^ Gibson GR (October 1998). "Dietary modulation of the human gut microflora using prebiotics". Br. J. Nutr. 80 (4): S209–12. PMID 9924286. 
  3. ^ Roberfroid MB (June 2000). "Prebiotics and probiotics: are they functional foods?". Am. J. Clin. Nutr. 71 (6 Suppl): 1682S–7S; discussion 1688S–90S. PMID 10837317. 
  4. ^ Macfarlane GT, Steed H, Macfarlane S (February 2008). "Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics". J. Appl. Microbiol. 104 (2): 305–44. doi:10.1111/j.1365-2672.2007.03520.x. PMID 18215222. 
  5. ^ Gibson G.R.; McCartney A.L.; Rastall R.A. (2005). "Prebiotics and resistance to gastrointestinal infections". Br. J. Nutr. 93 (Suppl. 1): 31–34. 
  6. ^ Shoaf K.; Muvey G.L.; Armstrong G.D.; Hutkins R.W. (2006). "Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells". Infect Immun. 74 (12): 6920–8. doi:10.1128/iai.01030-06. PMC 1698067Freely accessible. PMID 16982832. 
  7. ^ Sinclair HR, et al. (2009). "Galactooligosaccharides (GOS) inhibit Vibrio cholerae toxin binding to its GM1 receptor". Journal of Agricultural and Food Chemistry. 57 (8): 3113–3119. doi:10.1021/jf8034786. PMID 19290638. 
  8. ^ Macfarlane GT, Steed H, et al. (2008). "Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics". Journal of Applied Microbiology. 104 (2): 305–344. doi:10.1111/j.1365-2672.2007.03520.x. PMID 18215222. 
  9. ^ Vos AP, M'Rabet L, et al. (2007). "Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates". Critical Reviews in Immunology. 27 (2): 97–140. doi:10.1615/critrevimmunol.v27.i2.10. PMID 17725499. 
  10. ^ Scholtens, P. A; Goossens, D. A; Staiano, A (2014). "Stool characteristics of infants receiving short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides: A review". World Journal of Gastroenterology. 20 (37): 13446–13452. doi:10.3748/wjg.v20.i37.13446. PMC 4188896Freely accessible. PMID 25309075. 
  11. ^ Yu, T; Zheng, Y. P; Tan, J. C; Xiong, W. J; Wang, Y; Lin, L (2017). "Effects of Prebiotics and Synbiotics on Functional Constipation". The American Journal of the Medical Sciences. 353 (3): 282–292. doi:10.1016/j.amjms.2016.09.014. PMID 28262216.