Gas turbine locomotive

From Wikipedia, the free encyclopedia
  (Redirected from Gas turbine-electric locomotive)
Jump to navigation Jump to search
A 44-ton 1-B-1 experimental gas turbine locomotive designed by R. Tom Sawyer and built in 1952 for testing by the U.S. Army Transportation Corps
UP 18, a gas turbine-electric locomotive preserved at the Illinois Railway Museum

A gas turbine locomotive is a type of railway locomotive in which the prime mover is a gas turbine. Several types of gas turbine locomotive have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels (drivers). A gas turbine train typically consists of two power cars (one at each end of the train), and one or more intermediate passenger cars.

A gas turbine offers some advantages over a piston engine. There are few moving parts, decreasing the need for lubrication and potentially reducing maintenance costs, and the power-to-weight ratio is much higher. A turbine of a given power output is also physically smaller than an equally powerful piston engine, allowing a locomotive to be very powerful without being inordinately large.

However, a turbine's power output and efficiency both drop dramatically with rotational speed, unlike a piston engine, which has a comparatively flat power curve. This makes GTEL systems useful primarily for long-distance high-speed runs. Additional problems with gas turbine-electric locomotives included that they were very noisy[1] [2] and they produced such extremely hot exhaust that, if the locomotive were parked under an overpass paved with asphalt, it could melt the asphalt. [3]

Unlike steam engines, internal combustion engines require a transmission to power the wheels. The engine must be allowed to continue to run when the locomotive is stopped. There are below types of gas-turbine locomotives.

Gas turbine-mechanical[edit]

Diagram of a free-piston engine as a gas generator for a gas turbine

Gas turbine-mechanical locomotives, use a mechanical transmission to deliver the power output of gas turbines to the wheels. One option is a two-shaft machine, with separate turbines to drive the compressor and the output shaft. Another is to use a separate gas generator, which may be of either rotary or piston type.[citation needed]

Early developments[edit]

A gas turbine locomotive was patented in 1861 by Marc Antoine Francois Mennons (British patent no. 1633).[4] The drawings in Mennons' patent show a locomotive of 0-4-2 wheel arrangement with a cylindrical casing resembling a boiler. At the front of the casing is the compressor, which Mennons calls a ventilator. This supplies air to a firebox and the hot gases from the firebox drive a turbine at the back of the casing. The exhaust from the turbine then travels forwards through ducts to preheat the incoming air. The turbine drives the compressor through gearing and an external shaft. There is additional gearing to a jackshaft which drives the wheels through side rods. The fuel is solid (presumably coal, coke or wood) and there is a fuel bunker at the rear. There is no evidence that the locomotive was actually built but the design includes the essential features of gas turbine locomotives built in the 20th century, including compressor, combustion chamber, turbine and air pre-heater.

Work leading to the emergence of the gas turbine locomotive began in France and Sweden in the 1920s but the first locomotive did not appear until 1950s. High fuel consumption was a major factor in the decline of conventional gas-turbine locomotives and the use of a piston engine as a gas generator would probably give better fuel economy than a turbine-type compressor, especially when running at less than full load.

France[edit]

The first gas turbine-mechanical locomotive in the world, Class 040-GA-1 of 1,000 hp was built by Renault in 1952 and had a Pescara free-piston engine as a gas generator. It was followed by two further locomotives, Class 060-GA-1 of 2,400 hp in 1959–61.[5]

The Pescara gas generator in 040-GA-1 consisted of a horizontal, single cylinder, two-stroke diesel engine with opposed pistons. It had no crankshaft and the pistons were returned after each power stroke by compression and expansion of air in a separate cylinder. The exhaust from the diesel engine powered the gas-turbine which drove the wheels through a two-speed gearbox and propeller shafts.[6] The free-piston engine was patented in 1934 by Raul Pateras Pescara.

Several similar locomotives were built in USSR by Kharkov Locomotive Works.[7]

Sweden[edit]

The power gas locomotive was built by Gotaverken. It had a vertical, five cylinder, two-stroke diesel engine with opposed pistons. There was a single crankshaft connected to both upper and lower pistons. The exhaust from the diesel engine powered the gas turbine which drove the wheels through reduction gearing, jack shaft and side rods.

Czechoslovakia[edit]

Turbine power was considered for railway traction in the former Czechoslovakia. Two turbine-powered prototypes were built, designated TL 659.001 and .002, featuring C-C wheel arrangement, 3200 hp (2.4 MW) main turbine, helper turbine and Tatra 111 helper diesel engine.

The first prototype was finished in February 1958 and was scheduled to be exhibited at Expo '58. This was aborted, because it wasn't ready in time. The first out-of-factory tests were conducted in March 1959 on the PlzeňChebSokolov line. On May 15, 1959, the first prototype pulled its heaviest train, 6486 metric tons, but the turbine caught fire only a day later. The engine was never restored and eventually scrapped.

The second prototype was built with lessons learned from the first prototype. It left the factory in March 1960 and was the only turbine locomotive to pass the tests for regular service on tracks of the former ČSD. This engine was tried near Kolín and Plzeň with mixed results. This engine was taken out of service in April 1966 and sold to University of Žilina as an educational instrument. The locomotive was scrapped some time later.

Although these experiments had mixed results, they were the most powerful locomotives with purely mechanical powertrain in the world and thus also the most powerful independent-traction locomotives in Czechoslovakia.

Coal-firing[edit]

In the 1940s and 1950s research was conducted, in both the USA and UK, aimed at building gas turbine locomotives which could run on pulverized coal. The main problem was to avoid erosion of the turbine blades by particles of ash. Some bench testing was done but the projects were abandoned before any complete locomotives were built. The sources for the following information are Robertson [8] and Sampson.[9]

United States[edit]

In the USA, the plan was to use a gas turbine similar to an oil-fuelled one and to remove ash particles with filters. Details of the US research (done in 1946) were passed to Britain's London, Midland and Scottish Railway.

United Kingdom[edit]

On 23 December 1952 the UK Ministry of Fuel and Power placed an order for a coal-fired gas turbine locomotive to be used on British Railways. The locomotive was to be built by the North British Locomotive Company and the turbine would be supplied by C. A. Parsons and Company.

According to Sampson, the plan was to use indirect heating. The pulverized coal would be burned in a combustion chamber and the hot gases passed to a heat exchanger. Here, the heat would be transferred to a separate body of compressed air which would power the turbine. Essentially, it would have been a hot air engine using a turbine instead of a piston.

Robertson shows a diagram which confirms Sampson's information but also refers to problems with erosion of turbine blades by ash. This is strange because, with a conventional shell and tube heat exchanger, there would be no risk of ash entering the turbine circuit.

Working cycle

There were two separate, but linked, circuits - the combustion circuit and the turbine circuit.

  1. Combustion circuit. Pulverized coal and air were mixed and burned in a combustion chamber and the hot gases passed to a heat exchanger where heat was transferred to the compressed air in the turbine circuit. After leaving the heat exchanger the combustion gases entered a boiler to generate steam for train heating.
  2. Turbine circuit. Air entered the compressor and was compressed. The compressed air passed to the heat exchanger where it was heated by the combustion gases. The heated compressed air drove two turbines - one to drive the compressor and the other to power the locomotive. The turbine exhaust (which was hot air) then entered the combustion chamber to support the combustion.

Specification

The locomotive was never built but the specification was as follows:

  • Wheel arrangement: C-C, later changed to 1A1A-A1A1
  • Horsepower: 1,800, later reduced to 1,500
  • Weight: 117 tons, later increased to 150 tons

The projected output was:

  • Tractive effort,
    • 30,000 lbf (130 kN) at 72 mph (116 km/h)
    • 45,000 lbf (200 kN) at 50 mph (80 km/h)
  • Thermal efficiency,
    • 10% at 1/10 load
    • 16% at half load
    • 19% at full load

The transmission was to be mechanical, via a two-speed gearbox, giving a high speed for passenger working and a lower speed for freight. The tractive effort figures, quoted above, look suspiciously high for the specified speeds. It seems more likely that the figures quoted are for starting tractive effort and maximum speed in high gear and low gear respectively. There is a model of the proposed locomotive at Glasgow Museum of Transport and some records are held at the National Railway Museum.

The British Rail GT3 was a much simpler machine consisting essentially of a standard oil-fired gas turbine mounted on a standard steam locomotive chassis, built as a demonstrator by English Electric in 1961. Its almost crude simplicity enabled it to avoid much of the unreliability which had plagued the complex experimental GTELs 18000 and 18100 in earlier years, but it nevertheless failed to be competitive against conventional traction and was scrapped.

Examples[edit]

Examples of gas turbine-mechanical locomotives:

Gas turbine-electric[edit]

A diagram of a gas turbine-electric locomotive.

A gas turbine-electric locomotive (GTEL) is a locomotive that uses a gas turbine to drive an electric generator or alternator. The electric current thus produced is used to power traction motors. This type of locomotive was first experimented with during the Second World War, but reached its peak in the 1950s to 1960s. Few locomotives use this system today.

A GTEL uses a turbo-electric drivetrain in which a turboshaft engine drives an electrical generator or alternator via a system of gears. The electrical power is distributed to power the traction motors that drive the locomotive. In overall terms the system is very similar to a conventional diesel-electric, with the large diesel engine replaced with a smaller gas turbine of similar power.

Union Pacific operated the largest fleet of such locomotives of any railroad in the world, and was the only railroad to use them for hauling freight. Most other GTELs have been built for small passenger trains, and only a few have seen any real success in that role. With a rise in fuel costs (eventually leading to the 1973 oil crisis), gas turbine locomotives became uneconomical to operate, and many were taken out of service. Additionally, Union Pacific's locomotives required more maintenance than originally anticipated, due to fouling of the turbine blades by the Bunker C oil used as fuel.

Switzerland[edit]

1942 publicity photo of Am 4/6 number 1101

In 1939 the Swiss Federal Railways ordered a GTEL with a 1,620 kW (2,170 hp) of maximum engine power from Brown Boveri. It was completed in 1941, and then underwent testing before entering regular service. The Am 4/6 was the world's first gas turbine-electric locomotive. It was intended primarily to work light, fast, passenger trains on routes which normally handle insufficient traffic to justify electrification.

United Kingdom[edit]

Two gas turbine locomotives of different design, 18000 and 18100, were ordered by the Great Western Railway but completed for the newly nationalised British Railways.

18000 was built by Brown Boveri and delivered in 1949. It was a 1840 kW (2470 hp) GTEL, ordered by the GWR and used for express passenger services.

18100 was built by Metropolitan-Vickers and delivered in 1951. It had an aircraft-type gas turbine of 2.2 MW (3,000 hp). Maximum speed was 90 miles per hour (140 km/h).[10]

A third locomotive, the GT3, was constructed in 1961. Although built by English Electric, who had pioneered electric transmission with LMS 10000 locomotives, this used a turbine-mechanical transmission.[11]

The British Rail APT-E, prototype of the Advanced Passenger Train, was turbine-powered. Like the French TGV, later models were electric. This choice was made because British Leyland, the turbine supplier, ceased production of the model used in the APT-E.[citation needed]

United States[edit]

First generation GTEL and a 1923 electric auto in Fremont, Nebraska in 1953

Union Pacific ran a large fleet of turbine-powered freight locomotives starting in the 1950s.[12] These were widely used on long-haul routes, and were cost-effective despite their poor fuel economy due to their use of "leftover" fuels from the petroleum industry. At their height the railroad estimated that they powered about 10% of Union Pacific's freight trains, a much wider use than any other example of this class. As other uses were found for these heavier petroleum byproducts, notably for plastics, the cost of the Bunker C fuel increased until the units became too expensive to operate and they were retired from service by 1969.

In April 1950, Westinghouse completed an experimental 4,000 hp (3,000 kW) turbine locomotive, #4000, known as the Blue Goose, with a B-B-B-B wheel arrangement. The locomotive used two 2,000 hp (1,500 kW) turbine engines, was equipped for passenger train heating with a steam generator that utilized the waste exhaust heat of the right hand turbine, and was geared for 100 miles per hour (160 km/h) While it was demonstrated successfully in both freight and passenger service on the PRR, MKT, and CNW, no production orders followed, and it was scrapped in 1953.[13]

An RTG Turboliner at Union Station in St. Louis in the 1970s

In the 1960s United Aircraft built the Turbo passenger train, which was tested by the Pennsylvania Railroad and later used by Amtrak and Via Rail. Via's remained in service into the 1980s and had an excellent maintenance record during this period, but were eventually replaced by the LRC in 1982. Amtrak purchased two different types of turbine-powered trainsets, which were both called Turboliners. The sets of the first type were similar in appearance to SNCF's T 2000 Turbotrain, though compliance with FRA safety regulations made them heavier and slower than the French trains. None of the first-type Turboliners remain in service. Amtrak also added a number of similarly named Rohr Turboliners (or RTL) to its roster. There were plans to rebuild these as RTL IIIs, but the program has been cancelled and the units are being sold or scrapped.

In 1966, the Long Island Rail Road tested an experimental gas turbine railcar (numbered GT-1), powered by two Garrett turbine engines. This car was based on a Budd Pioneer III design, with transmissions similar to Budd's 1950s era RDCs. The car was later modified (as GT-2) to add the ability to run on electric third rail as well.[14][15]

In 1977, the LIRR tested eight more gas turbine-electric/electric dual mode railcars, in an experiment sponsored by the USDOT. Four of these cars had GE-designed powertrains, while the other four had powertrains designed by Garrett (four more cars had been ordered with GM/Allison powertrains, but were canceled). These cars were similar to LIRR's M1 EMU cars in appearance, with the addition of step wells for loading from low level platforms. The cars suffered from poor fuel economy and mechanical problems, and were withdrawn from service after a short period of time. The four GE-powered cars were converted to M1 EMUs and the Garrett cars were scrapped.[16]

Bombardier’s experimental JetTrain locomotive toured North America in an early-2000s attempt to raise the technology's public profile.

In 1997 the Federal Railroad Administration (FRA) solicited proposals to develop high speed locomotives for routes outside the Northeast Corridor where electrification was not economical. Bombardier Ltd, at the Plattsburg, N.Y. plant where the Acela was produced, developed a prototype (JetTrain) which combined a Pratt & Whitney Canada PW100 gas turbine and a diesel engine with a single gearbox powering four traction motors identical to those in Acela. The diesel provided head end power and low speed traction, with the turbine not being started until after leaving stations. The prototype was completed in June 2000, and safety testing was done at the FRA's Pueblo, CO test track beginning in the summer of 2001. A maximum speed of 156 miles per hour (251 km/h) was reached. The prototype was then taken on a tour of potential sites for high speed service, but no service has yet begun.

Russia[edit]

Two gas turbine-electric locomotive types underwent testing in the Soviet Union. The G1-01 freight GTEL was intended to consist of two locomotives of a C-C wheel arrangement, but only one section was built. The test program began in 1959 and lasted into the early 1970s. The GP1 was a similar design, also with a C-C wheel arrangement, introduced in 1964. Two units were built, GP1-0001 and GP1-0002, which were also used in regular service. Both types had a maximum power output of 2,600 kW (3,500 hp).

In 2006, Russian Railways introduced the GEM-10 switcher GTEL. The turbine's maximum power output is 1,000 kW (1,300 hp) and it runs on liquefied natural gas. The GEM-10 has a C-C wheel arrangement. The TGEM10-0001 is a two-unit (cow-calf) switcher GTEL, with a B-B+B-B wheel arrangement, and uses the same turbine and fuel as the GEM-10.

The GT1-001 freight GTEL, introduced in 2007, ran on liquefied natural gas and has a maximum power output of 8,300 kW (11,100 hp).[17] The locomotive has a B-B-B+B-B-B wheel arrangement, and up to three GT1s can be coupled. On January 23, 2009, the locomotive conducted a test run with a 159 car train weighing 15,000 metric tons (14,800 long tons; 16,500 short tons). Further heavy-haul tests were conducted in December 2010.[18] In a test run conducted in September 2011 the locomotive pulled 170 freight cars weighing 16,000 metric tons (15,700 long tons; 17,600 short tons).[19]

Canada[edit]

The Turbo Train at Kingston, Ontario, Canada

Canadian National Railways (CN) was one of the operators of the Turbo, which were passed on to Via Rail. They operated on the major Toronto-Montreal route between 1968 and 1982, when they were replaced by the LRC.

In 2002, Bombardier Transportation announced the launch of the JetTrain, a high-speed trainset consisting of tilting carriages and a locomotive powered by a Pratt & Whitney turboshaft engine. Proposals were made to use the trains for Quebec City-Windsor, Orlando-Miami, and in Alberta, Texas, Nevada and the UK. One prototype was built and tested, but no JetTrains have yet been sold for service. However, nothing ever came of any of these proposals, and the JetTrain essentially disappeared, being superseded by the Bombardier Zefiro line of conventionally powered high speed and very high speed trains. The JetTrain no longer appears on any of Bombardier's current web sites or promotional materials, although it can still be found on older web sites bearing the Canadair logos.

France[edit]

SNCF's turbotrain in Houlgate on the Deauville-Dives railway line in 1989

The first TGV prototype, TGV 001, was powered by a gas turbine, but steep oil prices prompted the change to overhead electric lines for power delivery. However, two large classes of gas-turbine powered intercity railcars were constructed in the early 1970s (ETG and RTG) and were used extensively up to about 2000.

SNCF (French National Railways) used a number of gas-turbine trainsets, called the Turbotrain, in non-electrified territory. These typically consisted of a power car at each end with three cars between them. Turbotrain was in use up until 2005. After retirement, 4 sets were sold for further use in Iran.

See also[edit]

References[edit]

  1. ^ http://www.northeast.railfan.net/pro_faq2.html#turbine
  2. ^ http://www.american-rails.com/gas-turbine-locomotive.html
  3. ^ http://www.wearethepractitioners.com/library/the-practitioner/2012/08/16/rails-and-gas-turbines
  4. ^ http://worldwide.espacenet.com/publicationDetails/originalDocument?CC=GB&NR=186101633A&KC=A&FT=D&ND=3&date=18611218&DB=EPODOC&locale=en_EP
  5. ^ http://www.freikolben.ch/37464/98443.html
  6. ^ Sampson, H. (editor), The Dumpy Book of Railways of the World, published by Sampson Low, London, c.1956, pp 142-143
  7. ^ http://www.freikolben.ch/37464/98443.html
  8. ^ Robertson, K. The Great Western Railway Gas Turbines, published by Alan Sutton, 1989, ISBN 0-86299-541-8
  9. ^ Sampson, H. (editor), The Dumpy Book of Railways of the World, published by Sampson Low, London, date circa 1960
  10. ^ "Turbine Speeds British Trains" Popular Science, April 1952, p. 131, mid-page
  11. ^ Hughes, J.O.P. (14 December 1961). "The Design and Development of a Gas Turbine Locomotive". J. Inst. Locomotive Engineers. 52:2 (286): 180–220. Paper Nº633. 
  12. ^ "Gas Turbine Locomotive" Popular Mechanics, July 1949, cutaway drawing of development by GE for Union Pacific
  13. ^ Lee, Thos.R.:"Turbines Westward",pages 48,49,T.Lee Publications,1975, ISBN 0-916244-01-6
  14. ^ http://world.nycsubway.org/perl/show?42662
  15. ^ http://world.nycsubway.org/perl/show?10670
  16. ^ http://www.trainsarefun.com/lirr/lirrextralist/lirrextralist.htm
  17. ^ "Experimental gas turbine locomotive undertakes haulage tests". Railway Gazette International. 2009-01-14. Retrieved 2011-02-04. 
  18. ^ "Gas turbine in heavy haul tests". Railway Gazette International. 2010-12-24. Retrieved 2010-12-24. 
  19. ^ "Gas turbine locomotive set a new record (in Russian)". ITAR-TASS. Retrieved 2011-09-07. 

Sources[edit]

Further reading[edit]

The Parsons - North British Coal Burning Gas Turbine Locomotives Talk at the London Science Museum 12 April 1995 by J.R.Bolter Copyright the Newcomen Society

External links[edit]