Gauss–Kuzmin distribution

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Trappist the monk (talk | contribs) at 23:59, 4 January 2016 (cleanup extra text in page/pages/at parameters; convert some cite journal to cite magazine or news; using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Gauss–Kuzmin
Parameters (none)
Support
PMF
CDF
Mean
Median
Mode
Variance
Skewness (not defined)
Excess kurtosis (not defined)
Entropy 3.432527514776...[1][2][3]

In mathematics, the Gauss–Kuzmin distribution is a discrete probability distribution that arises as the limit probability distribution of the coefficients in the continued fraction expansion of a random variable uniformly distributed in (0, 1).[4] The distribution is named after Carl Friedrich Gauss, who derived it around 1800,[5] and Rodion Kuzmin, who gave a bound on the rate of convergence in 1929.[6][7] It is given by the probability mass function

Gauss–Kuzmin theorem

Let

be the continued fraction expansion of a random number x uniformly distributed in (0, 1). Then

Equivalently, let

then

tends to zero as n tends to infinity.

Rate of convergence

In 1928, Kuzmin gave the bound

In 1929, Paul Lévy[8] improved it to

Later, Eduard Wirsing showed[9] that, for λ=0.30366... (the Gauss-Kuzmin-Wirsing constant), the limit

exists for every s in [0, 1], and the function Ψ(s) is analytic and satisfies Ψ(0)=Ψ(1)=0. Further bounds were proved by K.I.Babenko.[10]

See also

References

  1. ^ Blachman, N. (1984). "The continued fraction as an information source (Corresp.)". IEEE Transactions onInformation Theory. 30 (4): 671–674. doi:10.1109/TIT.1984.1056924.
  2. ^ Kornerup, P.; Matula, D. (July 1995). "LCF: A lexicographic binary representation of the rationals". Journal of Universal Computer Science. 1: 484–503. doi:10.1007/978-3-642-80350-5_41.
  3. ^ Vepstas, L. (2008), Entropy of Continued Fractions (Gauss-Kuzmin Entropy) (PDF)
  4. ^ Weisstein, Eric W. "Gauss–Kuzmin Distribution". MathWorld.
  5. ^ Gauss, C.F. Werke Sammlung. Vol. 10/1. pp. 552–556.
  6. ^ Kuzmin, R.O. (1928). "On a problem of Gauss". DAN SSSR: 375–380.
  7. ^ Kuzmin, R.O. (1932). "On a problem of Gauss". Atti del Congresso Internazionale dei Matematici, Bologna. 6: 83–89.
  8. ^ Lévy, P. (1929). "Sur les lois de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue". Bulletin de la Société Mathématique de France. 57: 178–194. JFM 55.0916.02.
  9. ^ Wirsing, E. (1974). "On the theorem of Gauss–Kusmin–Lévy and a Frobenius-type theorem for function spaces". Acta Arithmetica. 24: 507–528.
  10. ^ Babenko, K.I. (1978). "On a problem of Gauss". Soviet Math. Dokl. 19: 136–140.