Genetic divergence

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Genetic divergence is the process in which two or more populations of an ancestral species accumulate independent genetic changes (mutations) through time, often after the populations have become reproductively isolated for some period of time.[1] In some cases, subpopulations living in ecologically distinct peripheral environments can exhibit genetic divergence from the remainder of a population, especially where the range of a population is very large (see parapatric speciation). The genetic differences among divergent populations can involve silent mutations (that have no effect on the phenotype) or give rise to significant morphological and/or physiological changes. Genetic divergence will always accompany reproductive isolation, either due to novel adaptations via selection and/or due to genetic drift, and is the principal mechanism underlying speciation.

On a molecular genetics level, genetic divergence is due to changes in a small number of genes in a species, resulting in speciation.[2] However, researchers argue that it is unlikely that divergence is a result of a significant, single, dominant mutation in a genetic locus because if that were so, the individual with that mutation would have zero fitness.[3] Consequently, they could not reproduce and pass the mutation on to further generations. Hence, it is more likely that divergence, and subsequently reproductive isolation, are the outcomes of multiple small mutations over evolutionary time accumulating in a population isolated from gene flow.[2]

Genetic divergence between related populations sometimes start by genetic bottleneck, and founder effects.

Causes of Genetic Divergence[edit]

One possible cause of genetic divergence is the founder effect, which is when a few individuals become isolated from their original population. Those individuals might overrepresent a certain genetic pattern, which means that certain biological characteristics are overrepresented. These individuals can form a new population with different gene pools from the original population. For example, 10% of the original population has blue eyes and 90% has brown eyes. By chance, 10 individuals are separated from the original population. If this small group has 80% blue eyes and 20% brown eyes, then their offspring would be more likely to have the allele for the blue eyes. As a result, the percentage of the population with blue eyes would be higher than the population with brown eyes, which is different from the original population. Another possible cause of genetic divergence is the bottleneck effect. The bottleneck effect is when an event, such as a natural disaster, causes a large portion of the population to die. By chance, certain genetic patterns will be overrepresented in the remaining population, which similar to what happens with the founder effect. [4]


  1. ^ "Reproductive Isolation". Understanding Evolution. Berkeley.
  2. ^ a b Palumbi, Stephen R. (1994). "Genetic Divergence, Reproductive Isolation, and Marine Speciation". Annual Review of Ecology and Systematics. 25: 547–572. doi:10.1146/annurev.ecolsys.25.1.547. JSTOR 2097324.
  3. ^ Mayr, Ernst (1942). Systematics and the Origin of Species. New York: Columbia University Press.
  4. ^ Campbell biology. Reece, Jane B., Campbell, Neil A., 1946-2004. (9th ed.). Boston: Benjamin Cummings / Pearson. 2011. pp. 476–480. ISBN 978-0-321-55823-7. OCLC 624556031.CS1 maint: others (link)