Gompertz distribution

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Gompertz distribution
Probability density function
Gompertz distribution
Note: b=2.322
Cumulative distribution function
Gompertz cumulative distribution
Parameters \eta, b > 0\,\!
Support x \in [0, \infty)\!
PDF b\eta e^{bx}e^{\eta}\exp\left(-\eta e^{bx} \right)
CDF 1-\exp\left(-\eta\left(e^{bx}-1 \right)\right)
Mean (1/b)e^{\eta}\text{Ei}\left(-\eta\right)
 \text {where  Ei}\left(z\right)=\int\limits_{-z}^{\infin}\left(e^{-v}/v\right)dv
Median \left(1/b\right)\ln\left[\left(-1/\eta\right)\ln\left(1/2\right)+1\right]
Mode =\left(1/b\right)\ln \left(1/\eta\right)\
\text {with }0 <\text {F}\left(x^*\right)<1-e^{-1} = 0.632121, 0<\eta<1
=0, \quad \eta \ge 1
Variance \left(1/b\right)^2 e^{\eta}\{-2\eta { \ }_3\text {F}_3 \left(1,1,1;2,2,2;-\eta\right)+\gamma^2
+\left(\pi^2/6\right)+2\gamma\ln\left(\eta\right)+[\ln\left(\eta\right)]^2-e^{\eta}[\text{Ei}\left(-\eta \right)]^2\}
\begin{align}\text{ where } &\gamma \text{ is the Euler constant: }\,\!\\ &\gamma=-\psi\left(1\right)=\text{0.577215... }\end{align}\begin{align}\text { and } { }_3\text {F}_3&\left(1,1,1;2,2,2;-z\right)=\\&\sum_{k=0}^\infty\left[1/\left(k+1\right)^3\right]\left(-1\right)^k\left(z^k/k!\right)\end{align}
MGF \text{E}\left(e^{-t x}\right)=\eta e^{\eta}\text{E}_{t/b}\left(\eta\right)
\text{with E}_{t/b}\left(\eta\right)=\int_1^\infin e^{-\eta v} v^{-t/b}dv,\ t>0

In probability and statistics, the Gompertz distribution is a continuous probability distribution. The Gompertz distribution is often applied to describe the distribution of adult lifespans by demographers[1][2] and actuaries.[3][4] Related fields of science such as biology[5] and gerontology[6] also considered the Gompertz distribution for the analysis of survival. More recently, computer scientists have also started to model the failure rates of computer codes by the Gompertz distribution.[7] In Marketing Science, it has been used as an individual-level simulation for customer lifetime value modeling.[8] In an independent effort, early users in the 1990s for the Gompertz distribution in CLV models included Edge Consulting and BrandScience


Probability density function[edit]

The probability density function of the Gompertz distribution is:

f\left(x;\eta, b\right)=b\eta e^{bx}e^{\eta}\exp\left(-\eta e^{bx} \right)\text{for }x \geq 0, \,

where b > 0\,\! is the scale parameter and \eta > 0\,\! is the shape parameter of the Gompertz distribution. In the actuarial and biological sciences and in demography, the Gompertz distribution is parametrized slightly differently (Gompertz–Makeham law of mortality).

Cumulative distribution function[edit]

The cumulative distribution function of the Gompertz distribution is:

F\left(x;\eta, b\right)= 1-\exp\left(-\eta\left(e^{bx}-1 \right)\right) ,

where \eta, b>0, and  x \geq 0 \, .

Moment generating function[edit]

The moment generating function is:

\text{E}\left(e^{-t X}\right)=\eta e^{\eta}\text{E}_{t/b}\left(\eta\right)


\text{E}_{t/b}\left(\eta\right)=\int_1^\infin e^{-\eta v} v^{-t/b}dv,\ t>0.


The Gompertz distribution is a flexible distribution that can be skewed to the right and to the left.


The Gompertz density function can take on different shapes depending on the values of the shape parameter \eta\,\!:

  • When \eta \geq 1,\, the probability density function has its mode at 0.
  • When 0 < \eta < 1,\, the probability density function has its mode at
x^*=\left(1/b\right)\ln \left(1/\eta\right)\text {with }0 < F\left(x^*\right)<1-e^{-1} = 0.632121

Kullback-Leibler divergence[edit]

If f_1 and f_2 are the probability density functions of two Gompertz distributions, then their Kullback-Leibler divergence is given by

D_{KL} (f_1 \parallel f_2) 
& = \int_{0}^{\infty} f_1(x; b_1, \eta_1) \, \ln \frac{f_1(x; b_1, \eta_1)}{f_2(x; b_2, \eta_2)} dx \\
& = \ln \frac{e^{\eta_1} \, b_1 \, \eta_1}{e^{\eta_2} \, b_2 \, \eta_2}
+ e^{\eta_1} \left[ \left(\frac{b_2}{b_1} - 1 \right) \, \operatorname{Ei}(- \eta_1)
+ \frac{\eta_2}{\eta_1^{\frac{b_2}{b_1}}} \, \Gamma \left(\frac{b_2}{b_1}+1, \eta_1 \right) \right]
- (\eta_1 + 1)

where \operatorname{Ei}(\cdot) denotes the exponential integral and \Gamma(\cdot,\cdot) is the upper incomplete gamma function.[9]

Related distributions[edit]

  • If X is defined to be the result of sampling from a Gumbel distribution until a negative value Y is produced, and setting X=−Y, then X has a Gompertz distribution.
  • The gamma distribution is a natural conjugate prior to a Gompertz likelihood with known scale parameter b \,\!.[8]
  • When \eta\,\! varies according to a gamma distribution with shape parameter \alpha\,\! and scale parameter \beta\,\! (mean = \alpha/\beta\,\!), the distribution of x is Gamma/Gompertz.[8]

See also[edit]


  1. ^ Vaupel, James W. (1986). "How change in age-specific mortality affects life expectancy". Population Studies 40 (1): 147–157. doi:10.1080/0032472031000141896. 
  2. ^ Preston, Samuel H.; Heuveline, Patrick; Guillot, Michel (2001). Demography:measuring and modeling population processes. Oxford: Blackwell. 
  3. ^ Benjamin, Bernard; Haycocks, H.W.; Pollard, J. (1980). The Analysis of Mortality and Other Actuarial Statistics. London: Heinemann. 
  4. ^ Willemse, W. J.; Koppelaar, H. (2000). "Knowledge elicitation of Gompertz' law of mortality". Scandinavian Actuarial Journal (2): 168–179. 
  5. ^ Economos, A. (1982). "Rate of aging, rate of dying and the mechanism of mortality". Archives of Gerontology and Geriatrics 1 (1): 46–51. 
  6. ^ Brown, K.; Forbes, W. (1974). "A mathematical model of aging processes". Journal of Gerontology 29 (1): 46–51. doi:10.1093/geronj/29.1.46. 
  7. ^ Ohishi, K.; Okamura, H.; Dohi, T. (2009). "Gompertz software reliability model: estimation algorithm and empirical validation". Journal of Systems and Software 82 (3): 535–543. doi:10.1016/j.jss.2008.11.840. 
  8. ^ a b c Bemmaor, Albert C.; Glady, Nicolas (2012). "Modeling Purchasing Behavior With Sudden 'Death': A Flexible Customer Lifetime Model". Management Science 58 (5): 1012–1021. doi:10.1287/mnsc.1110.1461. 
  9. ^ Bauckhage, C. (2014), Characterizations and Kullback-Leibler Divergence of Gompertz Distributions, arXiv:1402.3193.


  • Bemmaor, Albert C.; Glady, Nicolas (2011). "Implementing the Gamma/Gompertz/NBD Model in MATLAB" (PDF). Cergy-Pontoise: ESSEC Business School. 
  • Gompertz, B. (1825). "On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies". Philosophical Transactions of the Royal Society of London 115: 513–583. doi:10.1098/rstl.1825.0026. JSTOR 107756. 
  • Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1995). "Continuous Univariate Distributions" 2 (2nd ed.). New York: John Wiley & Sons. pp. 25–26. ISBN 0-471-58494-0. 
  • Sheikh, A. K.; Boah, J. K.; Younas, M. (1989). "Truncated Extreme Value Model for Pipeline Reliability". Reliability Engineering and System Safety 25 (1): 1–14. doi:10.1016/0951-8320(89)90020-3.