Gravitational singularity

From Wikipedia, the free encyclopedia
  (Redirected from Gravitational singularities)
Jump to: navigation, search
Animated simulation of gravitational lensing caused by a Schwarzschild black hole passing in a line-of-sight planar to a background galaxy. Around and at the time of exact alignment (syzygy) extreme lensing of the light is observed.

A gravitational singularity or space-time singularity is a location in space-time where the gravitational field of a celestial body becomes infinite in a way that does not depend on the coordinate system. The quantities used to measure gravitational field strength are the scalar invariant curvatures of space-time, which includes a measure of the density of matter. Since such quantities become infinite within the singularity, the laws of normal space-time cannot exist.[1][2]

A gravitational singularity as predicted by general relativity is at the center of a black hole: any star collapsing beyond a certain point (the Schwarzschild radius) would form a black hole, inside which a singularity (covered by an event horizon) would be formed.[3] The Penrose–Hawking singularity theorems define a singularity to have geodesics that cannot be extended in a smooth manner.[4] The termination of such a geodesic is considered to be the singularity.

According to modern general relativity, the initial state of the universe, at the beginning of the Big Bang, was a singularity.[5] Both general relativity and quantum mechanics break down in describing the earliest moments of the Big Bang,[6] but in general, quantum mechanics does not permit particles to inhabit a space smaller than their wavelengths.[7]


Many theories in physics have mathematical singularities of one kind or another. Equations for these physical theories predict that the ball of mass of some quantity becomes infinite or increases without limit. This is generally a sign for a missing piece in the theory, as in the Ultraviolet Catastrophe, re-normalization, and instability of a hydrogen atom predicted by the Larmor formula.

Some theories, such as the theory of loop quantum gravity suggest that singularities may not exist.[8] The idea can be stated in the form that due to quantum gravity effects, there is a minimum distance beyond which the force of gravity no longer continues to increase as the distance between the masses becomes shorter, or alternatively that interpenetrating particle waves mask gravitational effects that would be felt at a distance.


There are different types of singularities, each with different physical features which have characteristics relevant to the theories in which they originally emerged from, such as the different shape of the singularities, conical and curved. They have also been hypothesized to occur without Event Horizons, structures which delineate, one space-time section from another in which events cannot affect past the horizon, these are called naked.


A conical singularity occurs when there is a point where the limit of every diffeomorphism invariant quantity is finite, in which case space-time is not smooth at the point of the limit itself. Thus, space-time looks like a cone around this point, where the singularity is located at the tip of the cone. The metric can be finite everywhere if a suitable coordinate system is used.

An example of such a conical singularity is a cosmic string and a Schwarzschild black hole.[9]


A simple illustration of a non-spinning black hole and its singularity

Solutions to the equations of general relativity or another theory of gravity (such as supergravity) often result in encountering points where the metric blows up to infinity. However, many of these points are completely regular, and the infinities are merely a result of using an inappropriate coordinate system at this point. In order to test whether there is a singularity at a certain point, one must check whether at this point diffeomorphism invariant quantities (i.e. scalars) become infinite. Such quantities are the same in every coordinate system, so these infinities will not "go away" by a change of coordinates.

An example is the Schwarzschild solution that describes a non-rotating, uncharged black hole. In coordinate systems convenient for working in regions far away from the black hole, a part of the metric becomes infinite at the event horizon. However, space-time at the event horizon is regular. The regularity becomes evident when changing to another coordinate system (such as the Kruskal coordinates), where the metric is perfectly smooth. On the other hand, in the center of the black hole, where the metric becomes infinite as well, the solutions suggest a singularity exists. The existence of the singularity can be verified by noting that the Kretschmann scalar, being the square of the Riemann tensor i.e. , which is diffeomorphism invariant, is infinite. While in a non-rotating black hole the singularity occurs at a single point in the model coordinates, called a "point singularity", in a rotating black hole, also known as a Kerr black hole, the singularity occurs on a ring (a circular line), known as a "ring singularity". Such a singularity may also theoretically become a wormhole.[10]

More generally, a space-time is considered singular if it is geodesically incomplete, meaning that there are freely-falling particles whose motion cannot be determined beyond a finite time, being after the point of reaching the singularity. For example, any observer inside the event horizon of a non-rotating black hole would fall into its center within a finite period of time. The classical version of the Big Bang cosmological model of the universe contains a causal singularity at the start of time (t=0), where all time-like geodesics have no extensions into the past. Extrapolating backward to this hypothetical time 0 results in a universe with all spatial dimensions of size zero, infinite density, infinite temperature, and infinite space-time curvature.

Naked singularity[edit]

Until the early 1990s, it was widely believed that general relativity hides every singularity behind an event horizon, making naked singularities impossible. This is referred to as the cosmic censorship hypothesis. However, in 1991, physicists Stuart Shapiro and Saul Teukolsky performed computer simulations of a rotating plane of dust that indicated that general relativity might allow for "naked" singularities. What these objects would actually look like in such a model is unknown. Nor is it known whether singularities would still arise if the simplifying assumptions used to make the simulation were removed. However, it is hypothesized that light entering a singularity would similarly have its geodesics terminated, thus making the naked singularity look like a Black Hole.[11][12][13]

Disappearing event horizons exist in the nude, which is a spinning black hole in a vacuum. Specifically, if the angular momentum is high enough, the event horizons could disappear. Transforming the Kerr metric to Boyer–Lindquist coordinates, it can be shown [14] that the  coordinate (which is not the radius) of the event horizon is, , where , and . In this case, "event horizons disappear" means when the solutions are complex for , or .

Disappearing event horizons can also be seen with the Reissner–Nordström geometry of a charged black hole. In this metric, it can be shown[15] that the singularities occur at , where , and . Of the three possible cases for the relative values of  and , the case where  causes both  to be complex. This means the metric is regular for all positive values of , or in other words, the singularity has no event horizon.


Before Stephen Hawking came up with the concept of Hawking radiation, the question of black holes having entropy was avoided. However, this concept demonstrates that black holes can radiate energy, which conserves entropy and solves the incompatibility problems with the second law of thermodynamics. Entropy, however, implies heat and therefore temperature. The loss of energy also suggests that black holes do not last forever, but rather "evaporate" slowly. Small black holes tend to be hotter whereas larger ones tend to be colder. All known black hole candidates are so large that their temperature is far below that of the cosmic background radiation, so they are all gaining energy. They will not begin to lose energy until a cosmological redshift of more than one million is reached, rather than the thousand or so since the background radiation formed.

See also[edit]


  1. ^ "Blackholes and Wormholes". 
  2. ^ Claes Uggla (2006). "Spacetime Singularities". Einstein Online. 2 (1002). 
  3. ^ Curiel, Erik & Peter Bokulich. "Singularities and Black Holes". Stanford Encyclopedia of Philosophy. Center for the Study of Language and Information, Stanford University. Retrieved 26 December 2012. 
  4. ^ Moulay, Emmanuel. "The universe and photons" (PDF). FQXi Foundational Questions Institute. Retrieved 26 December 2012. 
  5. ^ Wald, p. 99
  6. ^ Hawking, Stephen. "The Beginning of Time". Stephen Hawking: The Official Website. Cambridge University. Retrieved 26 December 2012. 
  7. ^ Zebrowski, Ernest (2000). A History of the Circle: Mathematical Reasoning and the Physical Universe. Piscataway NJ: Rutgers University Press. p. 180. ISBN 978-0813528984. 
  8. ^ Rodolfo Gambini; Javier Olmedo; Jorge Pullin (2013). "Quantum black holes in Loop Quantum Gravity". Classical and Quantum Gravity. 31 (9): 095009. Bibcode:2014CQGra..31i5009G. arXiv:1310.5996Freely accessible. doi:10.1088/0264-9381/31/9/095009. 
  9. ^ Copeland, Edmund J; Myers, Robert C; Polchinski, Joseph (2004). "Cosmic F- and D-strings". Journal of High Energy Physics. 2004 (6): 013. Bibcode:2004JHEP...06..013C. arXiv:hep-th/0312067Freely accessible. doi:10.1088/1126-6708/2004/06/013. 
  10. ^ If a rotating singularity is given a uniform electrical charge, a repellent force results, causing a ring singularity to form. The effect may be a stable wormhole, a non-point-like puncture in space-time that may be connected to a second ring singularity on the other end. Although such wormholes are often suggested as routes for faster-than-light travel, such suggestions ignore the problem of escaping the black hole at the other end, or even of surviving the immense tidal forces in the tightly curved interior of the wormhole.
  11. ^ M. Bojowald (2008). "Loop Quantum Cosmology". Living Reviews in Relativity. 11 (4). Bibcode:2008LRR....11....4B. doi:10.12942/lrr-2008-4. 
  12. ^ R. Goswami; P. Joshi (2008). "Spherical gravitational collapse in N-dimensions". Physical Review D. 76 (8): 084026. Bibcode:2007PhRvD..76h4026G. arXiv:gr-qc/0608136Freely accessible. doi:10.1103/PhysRevD.76.084026. 
  13. ^ R. Goswami; P. Joshi; P. Singh (2006). "Quantum evaporation of a naked singularity". Physical Review Letters. 96 (3): 031302. Bibcode:2006PhRvL..96c1302G. PMID 16486681. arXiv:gr-qc/0506129Freely accessible. doi:10.1103/PhysRevLett.96.031302. 
  14. ^ Hobson, et al., General Relativity an Introduction for Physicists, Cambridge University Press 2007, p. 300-305
  15. ^ Hobson, et al., General Relativity an Introduction for Physicists, Cambridge University Press 2007, p. 320-325


Further reading[edit]

  • The Elegant Universe by Brian Greene. This book provides a layman's introduction to string theory, although some of the views expressed are already becoming outdated. His use of common terms and his providing of examples throughout the text help the layperson understand the basics of string theory.