Gravity R&D

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
The Gravity R&D Company
Founded2007 (2007)
Number of locations
Turkey, Japan, Indonesia, Vietnam, Romania, Győr
Area served
Key people
Domonkos Tikk (CEO & Co-founder)

Gábor Tóth (Head of Marketing and Sales at Gravity R&D, Managing Director at Gravity B&M)
Viktor Gerő (Member of the board)
Bottyán Németh (Product Owner, co-founder)

István Pilászy (Head of Development, co-founder)
ProductsYusp, RECO for e-commerce, RECO for Bricks & Mortar Retailers, Retail Banks, and Telecommunications Companies
ServicesIT Services, Personalization, SaaS
OwnerHungarian institutional strategic investors, Wojciech Uzdelewicz,[1] Founders
Number of employees

Gravity R&D (full name: Gravity Research & Development Zrt.) is an IT vendor specialized in recommender systems. Gravity was founded by members of the Netflix Prize team "Gravity".

Gravity is headquartered in Hungary (Budapest & Győr) with local offices in Turkey, Japan, Indonesia, Vietnam, and Romania.


Netflix Prize[edit]

The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings. The prize would be awarded to the team achieving over 10% improvement over Netflix's own Cinematch algorithm.

The team "Gravity" was the front runner during January—May 2007.[2]

The leading position was achieved again in October 2007 in collaboration with the team "Dinosaur Planet" under the name "When Gravity and Dinosaurs Unite".

In January 2009, the two teams founded "Grand Prize Team" to initiate even wider collaboration that resulted in being one of the leading teams throughout 2009.

On July 25, 2009 the team "The Ensemble", a merger of the teams "Grand Prize Team" and "Opera Solutions and Vandelay United", achieved a 10.10% improvement over Cinematch on the Quiz set.[3]

On September 18, 2009, Netflix announced team "BellKor's Pragmatic Chaos" as the prize winner, and the prize was awarded to the team in a ceremony on September 21, 2009.[4] "The Ensemble" team had in fact succeeded to match the winning "BellKor" team's result, but since "BellKor" submitted their results 20 minutes earlier, the rules award the prize to them.[5][6]

Details on the algorithms developed by the Gravity team can be found in their scientific publications.[7][8][9] Some algorithms are patented in the US.[10]

The data mining team of the company is actively doing research in the field of recommender systems and publish their recent results regularly.[11][12][13][14][15][16][17][18]

Early years[edit]

In 2009 and 2011, Gravity R&D got 2 rounds of investments from include Hungarian institutional strategic investors, Wojciech Uzdelewicz (an all-star analyst at Wall Street according to hedge funds,[2] former Managing Director of Duquesque Capital[29]), and the financial investor PortfoLion.

Gravity R&D introduced in 2010 RECO, its cloud-based SaaS personalization solutions for online businesses (e-commerce, market places, classified media, publishers, etc).


On the model of P&G, Gravity separated company name and product name in 2017. Company name will remain Gravity while brand name is changed to be Yusp. Yusp is the name of the new generation personalization engine. Under Yusp, Gravity currently develops different product lines for SME, online-only, and bricks and mortar retail, telecommunications and retail banking customers and potential customers. Yusp will be the umbrella brand for all services the Gravity companies currently offer or will offer in the future.

Gravity B&M[edit]

In 2016 the firm expanded internationally and established new practice areas.

Through its own subsidiary called Gravity Bricks & Mortar, the company is developing and providing personalization and recommendation solutions to Retail and Supermarket Chains, Retail Banks and Telecommunications companies worldwide by closely cooperating professionally and commercially[19] with its strategic partner Deloitte in the joint sale and implementation of the above mentioned solutions to whom it may be of interest. Deloitte Consulting was recently ranked by Gartner, IDC, and Kennedy as the leading consulting firm globally for the fifth consecutive year, named a leader in business transformation consulting by Forrester, and serves 90% of Fortune 500 companies.

Awards and recognition[edit]

  • Winner of the first edition of the "Strands $100K Call for Recommender Start-ups" (October 24, 2008)[20][21]
  • "WINNER of the Red Herring 100 Europe" (April 3, 2009)[22]
  • Selected among "Europe's Top 25 Most Innovative Start-ups" at Eurecan European Venture Contest 2009 (EEVC). (December, 2009)[23]
  • Winner of the International Classified Media Association's "Show Me the Money" prize at the 2012 ICMA Innovation Award.[24]
  • 2012 ACM RecSys Honorable Mention [25]
  • Member of the FP7 EU project CrowdRec[26]
  • Selected to represent Hungary in the V4 Google Summit on Digital Economy in September 2014, along with other Hungarian startups Prezi, Maven7, and Intellisense [27]
  • Recipient of The 2015 Deloitte Technology Fast 50 in Central Europe[28] award as the 2nd fastest growing startup in Hungary, and the 25th fastest growing startup overall in the CE region.


Gravity R&D has customers on 5 continents in more than 20 countries, among others in the US, Switzerland, Japan, Brazil, France, Poland, Romania, Hungary, Morocco, India, Vietnam, Indonesia, Malaysia, and Australia.[29] Gravity serves in April 2016 over 4 billion recommendations per month to its customers, with an estimated 30+ million dollars extra revenue per month.[30]

Gravity has numerous notable clients including Gittigidiyor (Ebay Turkey), Dailymotion,[31] RCI,[32] Naspers (eMag,[33] Allegro,[34] Vatera),, Schibsted Media Group (,


  1. ^ "How Hedge Funds Rate Wall Street Analysts, 2003".
  2. ^ Hafner, Katie (June 4, 2007). "Netflix Prize Still Awaits a Movie Seer". The New York Times. Retrieved 2010-03-07.
  3. ^ "The Ensemble". 2009-07-25.
  4. ^ "Grand Prize awarded to team BellKor's Pragmatic Chaos". Netflix Prize Forum. 2009-09-21.
  5. ^ Steve Lohr (2009-09-21). "A $1 Million Research Bargain for Netflix, and Maybe a Model for Others". New York Times.
  6. ^ "Mátrixfaktorizáció egymillió dollárért". Index. 2009-08-07.
  7. ^ Takács, G. B.; Pilászy, I. N.; Németh, B. N.; Tikk, D. (2007). "Major components of the gravity recommendation system". ACM SIGKDD Explorations Newsletter. 9 (2): 80. doi:10.1145/1345448.1345466.
  8. ^ Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk (2007), "On the Gravity Recommendation System" (PDF), in Gábor Takács and István Pilászy and Bottyán Németh and Domonkos Tikk (eds.), Proc. KDD Cup Workshop at SIGKDD, San Jose, California, pp. 22–30, retrieved 2010-04-15CS1 maint: uses authors parameter (link) CS1 maint: uses editors parameter (link)
  9. ^ Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk (2009), Scalable Collaborative Filtering Approaches for Large Recommender Systems (PDF)CS1 maint: uses authors parameter (link)
  10. ^ US patent 8676736, Pilaszy, et al., "Recommender systems and methods using modified alternating least squares algorithm", issued 2014-03-18 
  11. ^ István Pilászy, Domonkos Tikk (2009), "Recommending new movies", Recommending new movies: even a few ratings are more valuable than metadata, RecSys '09, pp. 93–100, doi:10.1145/1639714.1639731, ISBN 9781605584355CS1 maint: uses authors parameter (link)
  12. ^ István Pilászy, Dávid Zibriczky, Domonkos Tikk (2010), "Fast ALS-based matrix factorization for explicit and implicit feedback datasets", Proceedings of the fourth ACM conference on Recommender systems - Rec Sys '10, RecSys '10, pp. 71–78, doi:10.1145/1864708.1864726, ISBN 9781605589060CS1 maint: uses authors parameter (link)
  13. ^ Gábor Takács, István Pilászy, Domonkos Tikk (2011), "Applications of the conjugate gradient method for implicit feedback collaborative filtering", Proceedings of the fifth ACM conference on Recommender systems - Rec Sys '11, RecSys '11, pp. 297–300, doi:10.1145/2043932.2043987, ISBN 9781450306836CS1 maint: uses authors parameter (link)
  14. ^ Balázs Hidasi, Domonkos Tikk (2012), "Fast ALS-Based Tensor Factorization for Context-Aware Recommendation from Implicit Feedback", Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, 7524, pp. 67–82, arXiv:1204.1259, doi:10.1007/978-3-642-33486-3_5, ISBN 978-3-642-33485-6CS1 maint: uses authors parameter (link)
  15. ^ Gábor Takács, Domonkos Tikk (2012), "Alternating least squares for personalized ranking", Proceedings of the sixth ACM conference on Recommender systems - Rec Sys '12, RecSys '12, pp. 83–90, doi:10.1145/2365952.2365972, ISBN 9781450312707CS1 maint: uses authors parameter (link)
  16. ^ Balázs Hidasi, Domonkos Tikk (2013), "Context-aware item-to-item recommendation within the factorization framework", Proceedings of the 3rd Workshop on Context-awareness in Retrieval and Recommendation - CaRR '13, CaRR '13, pp. 19–25, doi:10.1145/2442670.2442675, ISBN 9781450318471CS1 maint: uses authors parameter (link)
  17. ^ Alan Said, Domonkos Tikk, Paolo Cremonesi (2014), "Benchmarking", Recommendation Systems in Software Engineering, pp. 275–300, doi:10.1007/978-3-642-45135-5_11, ISBN 978-3-642-45134-8CS1 maint: uses authors parameter (link)
  18. ^ Balázs Hidasi, Domonkos Tikk (2014), Approximate modeling of continuous context in factorization algorithmsCS1 maint: uses authors parameter (link)
  19. ^ "Deloitte appears on the market with a new service technology portfolio". 2016-08-24 – via Trademagazin.
  20. ^ "ACM Recommender Systems 2008 - Home". 2008-10-23. Retrieved 2010-05-02.
  21. ^ "Strands Blog " Instant personalized TV entertainment developer, Gravity R&D, winner of the Strands $100k Call for Recommender Start-Ups". Retrieved 2010-05-02.
  22. ^
  23. ^ "Europe Unlimited". 1999-12-04. Retrieved 2010-05-02.
  24. ^ "ICMA Innovation Award 2012". ICMA. Retrieved 4 May 2012.
  25. ^ "RecSys 2012 - Awards and Honorable Mentions".
  26. ^ "CrowdRec".
  27. ^ "GravityRD, Intellisen, Maven7 and Prezi are Showing the Innovation Potential of the V4 region".
  28. ^ "Technology Fast 50 Central Europe 2015" (PDF). 2015.
  29. ^ "Netflix Prize Runner-up unveils programming recommendations technology". ITVT. 2010-04-13.
  30. ^ "Lessons learnt at building recommendation services at industry scale". Slideshare. 2016-03-04.
  31. ^ "Előre megmondják, hogy milyen videót fogsz nézni". 2014-08-29.
  32. ^ Know What They Like, Recommend What They Want, RCI Ventures, March 2012
  33. ^ "eMag Gravity implinit colaborare". 2016-03-03.
  34. ^ "Gravity R&D, the Leading Personalization Provider, Partners With E-commerce Operator Allegro". 2015-06-29 – via PR Newswire.

External links[edit]

Coordinates: 47°29′38″N 19°07′21″E / 47.494013°N 19.122559°E / 47.494013; 19.122559