Grey matter

From Wikipedia, the free encyclopedia
  (Redirected from Gray substance)
Jump to: navigation, search
Grey matter
Spinal nerve.svg
The formation of the spinal nerve from the dorsal and ventral roots. (Grey matter labeled at center right.)
Grey matter and white matter - very high mag.jpg
Micrograph showing grey matter, with the characteristic neuronal cell bodies (dark shade of pink), and white matter with its characteristic fine meshwork-like appearance (left of image - lighter shade of pink). HPS stain.
Latin Substantia grisea
Grey matter
TA A14.1.00.002
FMA 67242
Anatomical terminology

Grey matter (or gray matter) is a major component of the central nervous system, consisting of neuronal cell bodies, neuropil (dendrites and myelinated as well as unmyelinated axons), glial cells (astrocytes and oligodendrocytes), synapses, and capillaries. Grey matter is distinguished from white matter, in that it contains numerous cell bodies and relatively few myelinated axons, while white matter contains relatively few cell bodies and is composed chiefly of long-range myelinated axon tracts.[1] The colour difference arises mainly from the whiteness of myelin. In living tissue, grey matter actually has a very light grey colour with yellowish or pinkish hues, which come from capillary blood vessels and neuronal cell bodies.[2]


Grey matter refers to unmyelinated neurons and other cells of the central nervous system. It is present in the brain, brainstem and cerebellum, and present throughout the spinal cord.

Grey matter is distributed at the surface of the cerebral hemispheres (cerebral cortex) and of the cerebellum (cerebellar cortex), as well as in the depths of the cerebrum (thalamus; hypothalamus; subthalamus, basal gangliaputamen, globus pallidus, nucleus accumbens; septal nuclei), cerebellar (deep cerebellar nuclei – dentate nucleus, globose nucleus, emboliform nucleus, fastigial nucleus), brainstem (substantia nigra, red nucleus, olivary nuclei, cranial nerve nuclei).

Grey matter in the spinal cord is known as the grey column which travels down the spinal cord distributed in three grey columns that are presented in an "H" shape. The forward-facing column is the anterior grey column, the rear-facing one is the posterior grey column and the interlinking one is the lateral grey column. The grey matter on the left and right side is connected by the grey commissure. The grey matter in the spinal cord consists of interneurons, as well as cell bodies.

Grey matter undergoes development and growth throughout childhood and adolescence.[3]


Grey matter contains most of the brain's neuronal cell bodies. The grey matter includes regions of the brain involved in muscle control, and sensory perception such as seeing and hearing, memory, emotions, speech, decision making, and self-control.[4]

The grey matter in the spinal cord is split into three grey columns:

The grey matter of the spinal cord can be divided into different layers, called Rexed laminae. These describe, in general, the purpose of the cells within the grey matter of the spinal cord at a particular location.

Clinical significance[edit]

High alcohol consumption has been correlated with significant reductions in grey matter volume.[5][6] Short-term cannabis use (30 days) is not correlated with changes in white or grey matter.[7] However, several cross-sectional studies have shown that repeated long-term cannabis use is associated with smaller grey matter volumes in the hippocampus, amygdala, medial temporal cortex, and prefrontal cortex, with increased grey matter volume in the cerebellum.[8][9][10] Long-term cannabis use also alters white matter integrity in an age-dependent manner,[11] with heavy cannabis use during adolescence and early adulthood causing the greatest amount of damage.[12]

Meditation has been shown to change grey matter structure.[13][14][15][16][17]

Habitual playing of action video games has been reported to promote a reduction in grey matter.[18][19]

It has been shown that pregnancy renders substantial changes in brain structure, primarily reductions in gray matter volume in regions subserving social cognition. The gray matter reductions endured for at least 2 years post-pregnancy. [20]



In the current edition[21] of the official Latin nomenclature, Terminologia Anatomica, substantia grisea is used for English grey matter. The adjective grisea for grey is however not attested in classical Latin.[22] The adjective grisea is derived from the French word for grey, gris.[22] Alternative designations like substantia cana [23] and substantia cinerea [24] are being used alternatively. The adjective cana, attested in classical Latin,[25] can mean grey,[22] or greyish white.[26] The classical Latin cinerea means ash-coloured.[25]

Additional images[edit]

See also[edit]


  1. ^ Purves, Dale; George J. Augustine; David Fitzpatrick; William C. Hall; Anthony-Samuel LaMantia; James O. McNamara; Leonard E. White (2008). Neuroscience (4th ed.). Sinauer Associates. pp. 15–16. ISBN 978-0-87893-697-7. 
  2. ^ Kolb & Whishaw: Fundamentals of Human Neuropsychology (2003) page 49
  3. ^ Sowell, E. R.; Thompson, P. M.; Tessner, K. D.; Toga, A. W. (2001). "Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation". The Journal of Neuroscience. 21 (22): 8819–29. PMID 11698594. 
  4. ^ Miller, A. K. H.; Alston, R. L.; Corsellis, J. A. N. (1980). "Variation with Age in the Volumes of Grey and White Matter in the Cerebral Hemispheres of Man: Measurements with an Image Analyser". Neuropathology and Applied Neurobiology. 6 (2): 119–32. doi:10.1111/j.1365-2990.1980.tb00283.x. PMID 7374914. 
  5. ^ Yang, Xun; Tian, Fangfang; Zhang, Handi; Zeng, Jianguang; Chen, Taolin; Wang, Song; Jia, Zhiyun; Gong, Qiyong (2016). "Cortical and subcortical gray matter shrinkage in alcohol-use disorders: A voxel-based meta-analysis". Neuroscience & Biobehavioral Reviews. 66: 92–103. doi:10.1016/j.neubiorev.2016.03.034. PMID 27108216. 
  6. ^ Xiao, Peirong; Dai, Zhenyu; Zhong, Jianguo; Zhu, Yingling; Shi, Haicun; Pan, Pinglei (2015). "Regional gray matter deficits in alcohol dependence: A meta-analysis of voxel-based morphometry studies". Drug and Alcohol Dependence. 153: 22–8. doi:10.1016/j.drugalcdep.2015.05.030. PMID 26072220. 
  7. ^ Thayer, Rachel E.; YorkWilliams, Sophie; Karoly, Hollis C.; Sabbineni, Amithrupa; Ewing, Sarah Feldstein; Bryan, Angela D.; Hutchison, Kent E. "Structural Neuroimaging Correlates of Alcohol and Cannabis Use in Adolescents and Adults". Addiction: n/a–n/a. doi:10.1111/add.13923. ISSN 1360-0443. 
  8. ^ Lorenzetti, Valentina; Lubman, Dan I.; Whittle, Sarah; Solowij, Nadia; Yücel, Murat (September 2010). "Structural MRI findings in long-term cannabis users: what do we know?". Substance Use & Misuse. 45 (11): 1787–1808. doi:10.3109/10826084.2010.482443. ISSN 1532-2491. PMID 20590400. 
  9. ^ Matochik, John A.; Eldreth, Dana A.; Cadet, Jean-Lud; Bolla, Karen I. (2005-01-07). "Altered brain tissue composition in heavy marijuana users". Drug and Alcohol Dependence. 77 (1): 23–30. doi:10.1016/j.drugalcdep.2004.06.011. ISSN 0376-8716. PMID 15607838. 
  10. ^ Yücel, Murat; Solowij, Nadia; Respondek, Colleen; Whittle, Sarah; Fornito, Alex; Pantelis, Christos; Lubman, Dan I. (June 2008). "Regional brain abnormalities associated with long-term heavy cannabis use". Archives of General Psychiatry. 65 (6): 694–701. doi:10.1001/archpsyc.65.6.694. ISSN 1538-3636. PMID 18519827. 
  11. ^ Jakabek, David; Yücel, Murat; Lorenzetti, Valentina; Solowij, Nadia (October 2016). "An MRI study of white matter tract integrity in regular cannabis users: effects of cannabis use and age". Psychopharmacology. 233 (19-20): 3627–3637. doi:10.1007/s00213-016-4398-3. ISSN 1432-2072. PMID 27503373. 
  12. ^ Becker, Mary P.; Collins, Paul F.; Lim, Kelvin O.; Muetzel, R. L.; Luciana, M. (December 2015). "Longitudinal changes in white matter microstructure after heavy cannabis use". Developmental Cognitive Neuroscience. 16: 23–35. doi:10.1016/j.dcn.2015.10.004. ISSN 1878-9307. PMC 4691379Freely accessible. PMID 26602958. 
  13. ^ Black, David S.; Kurth, Florian; Luders, Eileen; Wu, Brian (2014). "Brain Gray Matter Changes Associated with Mindfulness Meditation in Older Adults: An Exploratory Pilot Study using Voxelbased Morphometry". Neuro. 1 (1): 23–26. doi:10.17140/NOJ-1-106. PMC 4306280Freely accessible. PMID 25632405. 
  14. ^ Hölzel, Britta K.; Carmody, James; Vangel, Mark; Congleton, Christina; Yerramsetti, Sita M.; Gard, Tim; Lazar, Sara W. (2011). "Mindfulness practice leads to increases in regional brain gray matter density". Psychiatry Research: Neuroimaging. 191 (1): 36–43. doi:10.1016/j.pscychresns.2010.08.006. PMC 3004979Freely accessible. PMID 21071182. 
  15. ^ Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W.; Luders, Eileen (2015). "Shifting brain asymmetry: the link between meditation and structural lateralization". Social Cognitive and Affective Neuroscience. 10 (1): 55–61. doi:10.1093/scan/nsu029. PMC 4994843Freely accessible. PMID 24643652. 
  16. ^ Fox, Kieran C.R.; Nijeboer, Savannah; Dixon, Matthew L.; Floman, James L.; Ellamil, Melissa; Rumak, Samuel P.; Sedlmeier, Peter; Christoff, Kalina (2014). "Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners". Neuroscience & Biobehavioral Reviews. 43: 48–73. doi:10.1016/j.neubiorev.2014.03.016. PMID 24705269. 
  17. ^ Hölzel, Britta K.; Carmody, James; Evans, Karleyton C.; Hoge, Elizabeth A.; Dusek, Jeffery A.; Morgan, Lucas; Pitman, Roger K.; Lazar, Sara W. (2010). "Stress reduction correlates with structural changes in the amygdala". Social Cognitive and Affective Neuroscience. 5 (1): 11–7. doi:10.1093/scan/nsp034. PMC 2840837Freely accessible. PMID 19776221. 
  18. ^
  19. ^
  20. ^ Hoekzema, Elseline; Barba-Müller, Erika; Pozzobon, Cristina; Picado, Marisol; Lucco, Florencio; García-García, David; Soliva, Juan Carlos; Tobeña, Adolf; Desco, Manuel; Crone, Eveline A.; Ballesteros, Agustín; Carmona, Susanna; Vilarroya, Oscar (2016). "Pregnancy leads to long-lasting changes in human brain structure". Nature Neuroscience. 20: 287. doi:10.1038/nn.4458. PMID 27991897. 
  21. ^ Federative Committee on Anatomical Terminology (FCAT) (1998). Terminologia Anatomica. Stuttgart: Thieme
  22. ^ a b c Triepel, H. (1910). Die anatomischen Namen. Ihre Ableitung und Aussprache. Mit einem Anhang: Biographische Notizen.(Dritte Auflage). Wiesbaden: Verlag J.F. Bergmann.
  23. ^ Triepel, H. (1910). Nomina Anatomica. Mit Unterstützung von Fachphilologen. Wiesbaden: Verlag J.F. Bergmann.
  24. ^ Schreger, C.H.Th.(1805). Synonymia anatomica. Synonymik der anatomischen Nomenclatur. Fürth: im Bureau für Literatur.
  25. ^ a b Lewis, C.T. & Short, C. (1879). A Latin dictionary founded on Andrews' edition of Freund's Latin dictionary. Oxford: Clarendon Press.
  26. ^ Stearn, W.T. (1983). Botanical Latin. History, grammar, syntax, terminology and vocabulary. (3rd edition). Newton Abbot London: David Charles.

External links[edit]