Great stellated 120-cell

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Great stellated 120-cell
Ortho solid 012-uniform polychoron p35-t0.png
Orthogonal projection
Type Schläfli-Hess polytope
Cells 120 {5/2,3}
Faces 720 {5/2}
Edges 720
Vertices 120
Vertex figure {3,5}
Schläfli symbol {5/2,3,5}
Coxeter-Dynkin diagram CDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Symmetry group H4, [3,3,5]
Dual Grand 120-cell
Properties Regular

In geometry, the great stellated 120-cell or great stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,5}. It is one of 10 regular Schläfli-Hess polytopes.

It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It is named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids.

Related polytopes[edit]

It has the same edge arrangement as the grand 600-cell, icosahedral 120-cell, and the same face arrangement as the grand stellated 120-cell.

Orthographic projections by Coxeter planes
H3 A2 / B3 / D4 A3 / B2
Schläfli-Hess polychoron-wireframe-4.png Grand 600-cell-ortho-6gon.png Grand 600-cell-ortho-4gon.png

With its dual, it forms the compound of grand 120-cell and great stellated 120-cell.

See also[edit]

References[edit]

  • Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder [1].
  • H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26, Regular Star-polytopes, pp. 404–408)
  • Klitzing, Richard. "4D uniform polytopes (polychora) o5o3o5/2x - gishi".

External links[edit]