Green rust

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Green rust is a generic name for various green crystalline chemical compounds containing iron(II) and iron(III) cations, the hydroxide (HO
) anion, and another anion such as carbonate (CO2−
3
), chloride (Cl
), or sulfate (SO2−
4
), in a layered double hydroxide structure. The most studied varieties are[1]

  • carbonate green rust - GR(CO2−
    3
    ): [Fe2+
    4
    Fe3+
    2
    (HO
    )12]2+ · [CO2−
    3
    ·2H
    2
    O
    ]2−.[2][3][4][5]
  • chloride green rust - GR(Cl
    ): [Fe2+
    3
    Fe3+
    (HO
    )8]+ · [Cl
    ·nH
    2
    O
    ].[4][5][6]
  • sulfate green rust - GR(SO2−
    4
    ): [Fe2+
    4
    Fe3+
    2
    (HO
    )12]2+ · [SO2−
    4
    ·2H
    2
    O
    ]2−.[5][7][8]

Other varieties reported in the literature have bromide Br
,[7] fluoride F
,[7] iodide I
,[9] nitrate NO
3
,[10] and selenate.[citation needed]

Green rust was first recognized as a corrosion crust on iron and steel surfaces.[2] It occurs in nature as the mineral fougerite.[1]

Structure[edit]

The crystal structure of green rust can be understood as the result of inserting the foreign anions and water molecules between brucite-like layers of iron(II) hydroxide, Fe(OH)2. The latter has an hexagonal structure, with layer sequence AcBAcB... , where A and B are planes of hydroxide ions, and c those of Fe2+
(iron(II), ferrous) cations. In the green rust, some Fe2+
cations get oxidized to Fe3+
(iron(III), ferric). Each triple layer AcB, which is electrically neutral in the hydroxide, becomes positively charged. The anions then intercalate between those triple layers and restore neutrality.[1]

There are two basic structures of green rust, "type 1" and "type 2".[11] Type 1 is exemplified by the chloride and carbonate varieties. It has a rhombohedral cystal structure similar to that of pyroaurite. The layers are stacked in the sequence AcBiBaCjCbAkA ...; where A, B, and C represent HO
planes, a, b, and c are layers of mixed Fe2+
and Fe3+
cations, and i, j, and k are layers of the intercalated anions and water molecules.[1][12][13] The c crystallographic parameter is 22.5-22.8 Å for the carbonate, and about 24 Å for the chloride.[4]

Type 2 green rust is exemplified by the sulfate variety. It has a hexagonal crystal structure, with layers probably stacked in the sequence AcBiAbCjA...[1][7][12]

Chemical properties[edit]

In oxidizing environment, green rust generally turns into Fe3+
oxyhydroxides, namely α-FeOOH (goethite) and γ-FeOOH (lepidocrocite).[12]

Oxidation of the carbonate variety can be retarded by wetting the material with hydroxyl-containing compounds such as glicerol or glucose, even though they do not penetrate the structure.[3] Some variety of green rust is stabilized also by an atmosphere with high CO
2
partial pressure.[3][14]

Sulfate green rust has been shown to reduce nitrate NO
3
and nitrite NO
2
in solution to ammonium NH+
4
, with concurrent oxidation of Fe2+
to Fe3+
. Depending on the cations in the solution, the nitrate anions replaced the sulfate in the intercalation layer, before the reduction. It was conjectured that gren rust may be formed in the reducing alcaline conditions below the surface of marine sediments, and may be connected to the disappearance of oxidized species like nitrate in that environment.[15][16][17]

Suspensions of carbonate green rust and orange γ-FeOOH in water will react over a few days produce a black precipitate of magnetite Fe
3
O
4
.[18]

Occurrence[edit]

Iron and steel corrosion[edit]

Green rust compounds were identified in green corrosion crusts that form on iron and steel surfaces, in alternating aerobic and anaerobic conditions, by water containing anions such as chloride, sulfate, carbonate, or bicarbonate.[2][4][8][11][12][19][20][21] They are believed to be intermediates in the oxidative corrosion of iron to form iron(III) oxyhydroxides (ordinary brown rust). The green rust may be formed either directly from metallic iron or from iron(II) hydroxide Fe(OH)2 and.[4]

Soil[edit]

On the basis of Mössbauer spectroscopic analysis, green rust minerals are suspected to occur as minerals in certain bluish-green soils that are formed in alternating redox conditions, and turn ochre once exposed to air.[22][23][24][25] The green rust has been conjectured to be present in the forn of the mineral fougerite.[5]

Biologically mediated formation[edit]

Hexagonal cystals of green rust (carbonate and/or sulfate) have also been obtained as a byproducts of bioreduction of ferric oxyhydroxides by dissimilatory iron-reducing bacteria, such as Shewanella putrefaciens, that couple the reduction of Fe3+
with the oxidation of organic matter.[26] This process has been conjectured to occur in soil solutions and aquifers.[18]

In one experiment, a 160 mM suspension of orange lepidocrocite γ-FeOOH in a solution containing formate (HCO
2
), incubated for 3 days with a culture of S. putrefaciens, turned dark green due to the conversion of the hydroxide to GR(CO2−
3
), in the form of hexagonal platelets with diameter ~7 µm. In this process, the formate was oxidized to bicarbonate HCO
3
which provided the carbonate anions for the formation of the green rust. The live bacteria were shown to be necessary for the formation of the green rust.[18]

Laboratory preparation[edit]

Air oxidation methods[edit]

Green rust compounds can be synthesized at ordinary ambient temperature and pressure, from solutions containing iron(II) cations, hydroxide anions, and the appropriate intercalatory anions, such as chloride,[6][27][28][29] sulfate,[30][31][32][33] or carbonate.[34]

The result is a suspension of ferrous hydroxide Fe(OH)2 in a solution of the third anion. This suspension is oxidized by stirring in air, or bubbling air through it.[24] Since the product is very prone to oxidation, it is necessary to monitor the process and exclude oxygen once the desired ratio of Fe2+
and Fe3+
is achieved.[3]

One method first combines an iron(II) salt with sodium hydroxide NaOH to form the ferrous hydroxide suspension. Then the sodium salt of the third anion is added, and the suspension is oxidized by stirring in air.[3][24][35]

For example, carbonate green rust can be prepared by mixing solutions of iron(II) sulfate FeSO
4
and sodium hydroxide; then adding sufficient amount of sodium carbonate Na
2
CO
3
solution, followed by the air oxidation step.[35]

Sulfate green rust can be obtained by mixing solutions of FeCl
2
·4H
2
O
and NaOH to precipitate Fe(OH)2 then immediately adding sodium sulfate Na
2
SO
4
and proceeding to the air oxidation step.[8][33]

A more direct method combines a solution of iron(II) sulfate FeSO
4
with NaOH, and proceeding to the oxidizing step.[17] The suspension must have a slight excess of FeSO
4
(in the ratio of 0.5833 Fe2+
for each HO
) for the green rust to form; however, too much of it will produce instead an insoluble basic iron sulfate, iron(II) sulfate hydroxide Fe
2
SO
4
(OH)2·nH
2
O
.[31] The production of green rust is reduced as temperature increases.[36]

Stoichometric Fe(II) - Fe(III) methods[edit]

An alternate preparation of carbonate green rust first creates a suspension of iron(III) hydroxide Fe(OH)3 in an iron(II) chloride FeCl
2
solution, and bubbles carbon dioxide through it.[3]

In a more recent variant, solutions of both iron(II) and iron(III) salts are first mixed, then a solution of NaOH is added, all in the stoichometric proportions of the desired green rust. No oxidation step is then necessary.[33]

Electrochemistry[edit]

Carbonate green rust films have also been obtained from the electrochemical oxidation of iron plates.[34]

References[edit]

Unspecifc references:[37][38]

  1. ^ a b c d e J.-M. R. Génin, Ph. Refait, L. Simon, and S. H. Drissi (1998): "Preparation and Eh-pH diagrams of Fe(II)-Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride, -sulphate and –carbonate". Hyperfine Interactions, volume 111, pages 313-318. doi:10.1023/A:1012638724990
  2. ^ a b c P. P. Stampfl (1969): "Ein basisches Eisen II-III Karbonat in Rost. Corrosion Science 9, pages 185-187.
  3. ^ a b c d e f Hans C. B. Hansen (1989): "Composition, stabilization, and light absorption of Fe(II)Fe(III) hydroxy-carbonate ('green rust')". Clay Minerals, volume 24, pages 663-669. doi:10.1180/claymin.1989.024.4.08
  4. ^ a b c d e M. Abdelmoula, Ph. Refait, S. H. Drissi, J. P. Mihe, and J.-M. R. Génin (1996): "Conversion electron Mössbauer spectroscopy and X-ray diffraction studies of the formation of carbonate-containing green rust one by corrosion of metallic iron in NaHCO3 and (NaHCO3 + NaCl) solutions". Corrosion Science, volume 38, pages 623-633. doi:10.1016/0010-938X(95)00153-B
  5. ^ a b c d M. Abdelmoula, F. Trolard, G. Bourrié and J.-M. R. Génin (1998): "Evidence of the Fe(II)–Fe(III) green rust `fougerite' mineral occurrence in a hydromorphic soil and its transformation with depth". Hyperfine Interactions, volume 111, pages 231-238. doi:10.1023/A:1010802508927
  6. ^ a b W. Feitknecht and G. Keller (1950): "Über die dunkelgrünen Hydroxyverbindungen des Eisens". Zeitschrift für anorganische und allgemeine Chemie, volume 262, pages 61-68. doi: 10.1002/zaac.19502620110
  7. ^ a b c d J. D. Bernal, D. R. Dasgupta, and A. L. Mackay (1959): "The oxides and hydroxides of iron and their structural inter-relationships". Clay Minerals Bulletin, volume 4, pages 15-30. doi:10.1180/claymin.1959.004.21.02
  8. ^ a b c J.-M. R. Génin, A. A. Olowe, B. Resiak, N. D. Benbouzid-Rollet, M. Confente and D. Prieur (1993): "Identification of sulphated green rust 2 compound produced as a result of microbially induced corrosion of steel sheet piles in harbour". In Marine Corrosion of Stainless Steels: Chlorination and Microbial Effects, European Federation Corrosion Series, The Institute of Materials, London; volume 10, pages 162-166.
  9. ^ L. Vins, J. Subrt, V. Zapletal, and F. Hanousek (1987): "Preparation and properties of green rust type substances". Collect. Czech. Chem. Comm. volume 52, pages 93-102.
  10. ^ J. R. Gancedo, M. L. Martinez, and J. M. Oton (1983): "Formación de 'herrumbre verde' en soluciones de NH4NO3" (= "Formation of green rust in NH4NO3 solutions"). Anales de Química, Série A, volume 79, pages 470-472.
  11. ^ a b I. R. McGill, B. McEnaney, and D. C. Smith (1976): "Crystal structure of green rust formed by corrosion of cast iron". Nature, volume 259, pages 1521-1529. doi:10.1038/259200a0
  12. ^ a b c d Ludovic Legrand, Léo Mazerolles and Annie Chaussé (2004): "The oxidation of carbonate green rust into ferric phases: Solid-state reaction or transformation via solution". Geochimica et Cosmochimica Acta, volume 68, issue 17, pages 3497—3507. doi:10.1016/j.gca.2004.02.019
  13. ^ R. Allmann (1968): "The crystal structure of pyroaurite". Acta Crystallographica, series B, volume 24, pages pages 972-977. doi:10.1107/S0567740868003511
  14. ^ R. M. Taylor (1982): "Stabilization of colour and structure in the pyroaurite compounds Fe(II)Fe(III)Al(III) hydroxycarbonates". Clay Minerals, volume 17, pages 369-372.
  15. ^ Hans C. B. Hansen, Christian Bender Koch, Hanne Nancke-Krogh, Ole K. Borggaard and Jan Sørensen (1996): "Abiotic nitrate reduction to ammonium: Key role of green rust". Environmental Science & Technology, volume 30, pages 2053-2056. doi:10.1021/es950844w
  16. ^ Christian Bender Koch and Hans C. B. Hansen (1997): "Reduction of nitrate to ammonium by sulfate green rust". Advances in GeoEcology, volume 30, pages 373-393.
  17. ^ a b Hans C. B. Hansen and Christian Bender Koch (1998): "Reduction of nitrate to ammonium by sulphate green rust: activation energy and reaction mechanism". Clay Minerals, volume 33, pages 87-101. doi:10.1180/000985598545453
  18. ^ a b c G. Ona-Nguema, M. Abdelmoula, F. Jorand, O. Benali, A. Génin, J. C. Block, and J.-M. R. Génin (2002): "Iron(II,III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction". Environmental Science & Technology, volume 36, pages 16-20.
  19. ^ G. Butler and J. G. Beynon (1967): "The corrosion of mild steel in boiling salt solutions". Corrosion Science 7, pages 385-404. doi:10.1016/S0010-938X(67)80052-0
  20. ^ Pascale M. Bonin, Wojciech Jȩdral, Marek S. Odziemkowski, and Robert W. Gillham (2000): "Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater". Corrosion Science 42, pages 1921-1939. doi:10.1016/S0010-938X(00)00027-5
  21. ^ S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chaussé, R. Messina, and P. Toulhoat (2001): "Experimental investigations on iron corro- sion products formed in bicarbonate/carbonate-containing solutions at 90 °C. Corrosion Science 43, pages 2049-2064.
  22. ^ F. N. Ponnamperuma (1972): "The chemistry of submerged soils. Adv. In Agronomy 24, pages 173-189.
  23. ^ W. L. Lindsay (1979): "Chemical Equilibria In Soils . Wiley Interscience.
  24. ^ a b c R. M. Taylor (1980): "Formation and properties of Fe(II)-Fe(III) hy- droxycarbonate and its possible signi fi cance in soil formation. Clay Minerals, volume 15, pages 369-382.
  25. ^ F. Trolard, J.-M. R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, and A. Herbillon (1997): "Identi fi cation of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim. Cosmochim. Acta 61, pages 1107-1111.
  26. ^ J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. Hinman, and S. M. Li (1998): "Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium". Geochimica et Cosmochimica Acta, volume 62, issues 19-20, pages 3239-3257. doi:10.1016/S0016-7037(98)00243-9
  27. ^ J. Detournay, R. Derie, and M. Ghodsie (1976): "Etude de l’oxydation par aération de Fe(OH)2 en milieu chlorure". Zeitschrift für anorganische und allgemeine Chemie, volume 427, pages 265-273. doi: 10.1002/zaac.654270311
  28. ^ Ph. Refait and J.-M. R. Génin (1993): "The oxidation of Fe(II) hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust I. Corrosion Science 34, pages 797-819.
  29. ^ U. Schwertmann and H. Fechter (1994): "The formation of green rust and its transformation to lepidocrocite. Clay Minerals, volume 29, pages 87-92.
  30. ^ J. Detournay, L. de Miranda, R. Derie, and M. Ghodsie (1975): "The region of stability of green rust II in the electrochemical potential-pH diagram in sulphate medium". Corrosion Science, volume 15, pages 295-306. doi:10.1016/S0010-938X(75)80011-4
  31. ^ a b A. A. Olowe and J.-M. R. Génin (1991): "The mechanism of oxidation of Fe(II) hydroxide in sulphated aqueous media: importance of the initial ratio of the reactants". Corrosion Science 32, pages 965-984. doi:10.1016/0010-938X(91)90016-I
  32. ^ J.-M. R. Génin, A. A. Olowe, Ph. Refait, and L. Simon (1996): "On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2: An electrochemical and Mössbauer spectroscopy study". Corrosion Science, volume 38, pages 1751-1762. doi: 10.1016/S0010-938X(96)00072-8
  33. ^ a b c A. Génin, C. Ruby, M. Abdelmoula, O. Benali, J. Ghanbaja, Ph. Refait, and J.-M. R. Génin (2002): "Synthesis of Fe(II-III) hydroxysulfate green rust by coprecipitation". Solid State Science, volume 4, pages 61-66. doi:10.1016/S1293-2558(01)01219-5
  34. ^ a b L. Legrand, S. Savoye, A. Chaussé, and R. Messina (2000): "Study of oxidation products formed on iron in solutions containing bicarbonate/carbonate". Electrochimica Acta, volume 46, issue 1, pages 111-117. doi:10.1016/S0013-4686(00)00563-6
  35. ^ a b S. H. Drissi, Ph. Refait, M. Abdelmoula, and J.-M. R. Génin (1995): "The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media". Corrosion Science, volume 37, pages 2025-2041. doi:10.1016/0010-938X(95)00096-3
  36. ^ A. A. Olowe, B. Pauron, J.-M. R. Génin (1991): "The influence of temperature on the oxidation of ferrous hydroxide in sulphated aqueous medium: Activation energies of formation of the products and hyperfine structure of magnetite" Corrosion Science, volume 32, issue 9, pages 985-1001. doi:10.1016/0010-938X(91)90017-J
  37. ^ Ph. Refait, L. Simon, and J.-M. R. Génin (2000): "Reduction of SeO 4 2 anions and anoxic formation of iron(II)-iron(III) hydroxy-selenate green rust. Environmental Science & Technology 34, pages 819-825.
  38. ^ G. Keller (1948) Doctoral thesis, University of Berne.