From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Greigite structure 110 SFe4 tetrahedra.png
Greigite structure, SFe4 tetrahedra
CategorySulfide mineral
Thiospinel group
Spinel structural group
(repeating unit)

Strunz classification2.DA.05
Crystal systemCubic
Crystal classHexoctahedral (m3m)
H-M symbol: (4/m 3 2/m)
Space groupFd3m
Unit cella = 9.876 Å; Z = 8
ColorPale pink, tarnishes to metallic blue-black
Crystal habitSpheres of intergrown octahedra and as disseminated microscopic grains
Mohs scale hardness4 to 4.5
LusterMetallic to earthy
Specific gravity4.049
Other characteristicsStrongly magnetic

Greigite is an iron sulfide mineral with the chemical formula Fe2+

. It is the sulfur equivalent of the iron oxide magnetite (Fe3O4). It was first described in 1964 for an occurrence in San Bernardino County, California, and named after the mineralogist and physical chemist Joseph W. Greig (1895–1977).[3][4]

Natural occurrence and composition[edit]

It occurs in lacustrine sediments with clays, silts and arkosic sand often in varved sulfide rich clays. It is also found in hydrothermal veins. Greigite is formed by magnetotactic bacteria and sulfate-reducing bacteria.[1] Greigite has also been identified in the sclerites of scaly-foot gastropods.[5]

The mineral typically appears as microscopic (< 0.03 mm) isometric hexoctahedral crystals and as minute sooty masses. Association minerals include montmorillonite, chlorite, calcite, colemanite, veatchite, sphalerite, pyrite, marcasite, galena and dolomite.[1][2]

Common impurities include Cu, Ni, Zn, Mn, Cr, Sb and As.[2] Ni impurities are of particular interest because the structural similarity between Ni-doped greigite and the (Fe,Ni)S clusters present in biological enzymes has led to suggestions that greigite or similar minerals could have acted as catalysts for the origin of life.[6] In particular, the cubic Fe4S4 unit of greigite is found in the Fe4S4 thiocubane units of proteins of relevance to the acetyl-CoA pathway.

Crystal structure[edit]

Greigite has the spinel structure. The crystallographic unit cell is cubic, with space group Fd3m. The S anions form a cubic close-packed lattice, and the Fe cations occupy both tetrahedral and octahedral sites.[1][7]

Magnetic and electronic properties[edit]

Like the related oxide magnetite (Fe3O4), greigite is ferrimagnetic, with the spin magnetic moments of the Fe cations in the tetrahedral sites oriented in the opposite direction as those in the octahedral sites, and a net magnetization. It is a mixed-valence compound, featuring both Fe(II) and Fe(III) centers in a 1:2 ratio. Both metal sites have high spin quantum numbers. The electronic structure of greigite is that of a half metal.[8][9]


  1. ^ a b c d Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C., eds. (1990). "Greigite" (PDF). Handbook of Mineralogy. I (Elements, Sulfides, Sulfosalts). Chantilly, VA, US: Mineralogical Society of America. ISBN 0962209708. Retrieved December 5, 2011.
  2. ^ a b c Greigite.
  3. ^ a b Greigite. Webmineral
  4. ^ Skinner, Brian J.; Erd, Richard C.; Grimaldi, Frank S. (1964). "Greigite, the thio-spinel of iron; a new mineral" (PDF). American Mineralogist. 49: 543–55.
  5. ^ "Armor-Plated Snail Discovered in Deep Sea". Retrieved 2016-08-29.
  6. ^ Russell, Michael J.; Martin, William (2004). "The rocky roots of the acetyl-CoA pathway". Trends in Biochemical Sciences. 29 (7): 358–363. doi:10.1016/j.tibs.2004.05.007. ISSN 0968-0004. PMID 15236743.
  7. ^ Vaughan, D. J.; Craig, J. R. “Mineral Chemistry of Metal Sulfides" Cambridge University Press, Cambridge: 1978. ISBN 0-521-21489-0.
  8. ^ Devey, A.J.; Grau-Crespo, R.; Leeuw, N.H. (2009). "Electronic and magnetic structure of Fe3S4: GGA+U investigation". Physical Review B. 79 (19): 195126. Bibcode:2009PhRvB..79s5126D. doi:10.1103/PhysRevB.79.195126.
  9. ^ Wang, Jun; Cao, Shi-He; Wu, Wei; Zhao, Guo-Meng (2011). "The Curie temperature and magnetic exchange energy in half-metallic greigite Fe3S4". Physica Scripta. 83 (4): 045702. Bibcode:2011PhyS...83d5702W. doi:10.1088/0031-8949/83/04/045702.