Grid network

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

A grid network is a computer network consisting of a number of (computer) systems connected in a grid topology.

In a regular grid topology, each node in the network is connected with two neighbors along one or more dimensions. If the network is one-dimensional, and the chain of nodes is connected to form a circular loop, the resulting topology is known as a ring. Network systems such as FDDI use two counter-rotating token-passing rings to achieve high reliability and performance. In general, when an n-dimensional grid network is connected circularly in more than one dimension, the resulting network topology is a torus, and the network is called "toroidal". When the number of nodes along each dimension of a toroidal network is 2, the resulting network is called a hypercube.

A parallel computing cluster or multi-core processor is often connected in regular interconnection network such as a de Bruijn graph,[1] a hypercube graph, a hypertree network, a fat tree network, a torus, or cube-connected cycles.

Note that a grid network is not the same as a grid computer (or computational grid) (even though the nodes in a grid network are usually computers, and grid computing obviously requires some kind of computer network or "universal coding" to interconnect the computers).

See also[edit]


  1. ^ "A Network-based Asynchronous Architecture for Cryptographic Devices" by Ljiljana Spadavecchia 2005. section " De Bruijn graphs", and section " Randomised routing in de Bruijn graphs".