Ground expression

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematical logic, a ground term of a formal system is a term that does not contain any free variables. Similarly, a ground formula is a formula that does not contain any free variables.

In first-order logic with identity, the sentence ∀x(x = x) is a ground formula. A ground expression is a ground term or ground formula.

Examples[edit]

Consider the following expressions in first order logic over a signature containing a constant symbol 0 for the number 0, a unary function symbol s for the successor function and a binary function symbol + for addition.

  • s(0), s(s(0)), s(s(s(0))), ... are ground terms,
  • 0 + 1, 0 + 1 + 1, ... are ground terms,
  • x + s(1) and s(x) are terms, but not ground terms,
  • s(0) = 1 and 0 + 0 = 0 are ground formulae,
  • s(1) and ∀x: (s(x) + 1 = s(s(x))) are ground expressions.

Formal definition[edit]

What follows is a formal definition for first-order languages. Let a first-order language be given, with C the set of constant symbols, V the set of (individual) variables, F the set of functional operators, and P the set of predicate symbols.

Ground terms[edit]

Ground terms are terms that contain no variables. They may be defined by logical recursion (formula-recursion):

  1. Elements of C are ground terms;
  2. If fF is an n-ary function symbol and α1, α2, ..., αn are ground terms, then f1, α2, ..., αn) is a ground term.
  3. Every ground term can be given by a finite application of the above two rules (there are no other ground terms; in particular, predicates cannot be ground terms).

Roughly speaking, the Herbrand universe is the set of all ground terms.

Ground atom[edit]

A ground predicate, ground atom or ground literal is an atomic formula all of whose argument terms are ground terms.

If pP is an n-ary predicate symbol and α1, α2, ..., αn are ground terms, then p1, α2, ..., αn) is a ground predicate or ground atom.

Roughly speaking, the Herbrand base is the set of all ground atoms, while a Herbrand interpretation assigns a truth value to each ground atom in the base.

Ground formula[edit]

A ground formula or ground clause is a formula without free variables.

Formulas with free variables may be defined by syntactic recursion as follows:

  1. The free variables of an unground atom are all variables occurring in it.
  2. The free variables of ¬p are the same as those of p. The free variables of pq, pq, pq are those free variables of p or free variables of q.
  3. The free variables of ∀x p and ∃x p are the free variables of p except x.

References[edit]

  • Dalal, M. (2000), "Logic-based computer programming paradigms", in Rosen, K.H.; Michaels, J.G. (eds.), Handbook of discrete and combinatorial mathematics, p. 68
  • Hodges, Wilfrid (1997), A shorter model theory, Cambridge University Press, ISBN 978-0-521-58713-6
  • First-Order Logic: Syntax and Semantics