Jump to content

Gyroelongated pentagonal birotunda

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Mark viking (talk | contribs) at 21:06, 20 September 2013 (Added see also [Birotunda]]). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Gyroelongated pentagonal birotunda
TypeJohnson
J47 - J48 - J49
Faces4x10 triangles
2+10 pentagons
Edges90
Vertices40
Vertex configuration2x10(3.5.3.5)
2.10(34.5)
Symmetry groupD5
Dual polyhedron-
Propertiesconvex, chiral
Net

In geometry, the gyroelongated pentagonal birotunda is one of the Johnson solids (J48). As the name suggests, it can be constructed by gyroelongating a pentagonal birotunda (either J34 or the icosidodecahedron) by inserting a decagonal antiprism between its two halves.

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

The gyroelongated pentagonal birotunda is one of five Johnson solids which are chiral, meaning that they have a "left-handed" and a "right-handed" form. In the illustration to the right, each pentagonal face on the bottom half of the figure is connected by a path of two triangular faces to a pentagonal face above it and to the left. In the figure of opposite chirality (the mirror image of the illustrated figure), each bottom pentagon would be connected to a pentagonal face above it and to the right. The two chiral forms of J48 are not considered different Johnson solids.

See also

  • Weisstein, Eric W. "Johnson Solid". MathWorld.


  1. ^ Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.