HR 8799 e

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
HR 8799 e
HR 8799 Orbiting Exoplanets.gif
HR 8799 e (center-right) from W. M. Keck Observatory.
Discovered byMarois et al.
Discovery siteKeck and Gemini
in Hawaii
Discovery dateNovember 1, 2010 (announced)
November 22, 2010 (published)
Direct imaging
Orbital characteristics
~ 14.5 ± 0.5[1][note 1] AU
~ 50[1][note 1] y
StarHR 8799
Physical characteristics
Mean radius
1.2 RJ
Mass7-9 [2] MJ
Temperature1,000 [3]
  1. ^ a b Value given assuming the planet's orbit is circular and is being observed face-on.

HR 8799 e is a large exoplanet, orbiting the star HR 8799, which lies 129 lightyears from Earth. This gas giant is between 5 and 10 times the mass of Jupiter,[1] the largest planet in the Solar System. Due to their young age and high temperature all four discovered planets in the HR 8799 system are large, compared to all gas giants in the Solar System.


HR 8799 e is the fourth planet orbiting HR 8799 in order of discovery. It is a young, hot and massive gas giant, and is fairly close to its star, lying just between the orbits of Saturn and Uranus in the Solar System. The planet is still glowing red hot.[1]

HR 8799 e is the innermost known planet as it orbits closer to its star than the other three known planets in this planetary system. This planet orbits at an estimated distance of 14.5 AU based on the relationship between angular separation measured by direct imaging observations and the star's distance from Earth. The estimated period of this planet if the orbit is face-on is about 50 years.[1]


A team of researchers led by Christian Marois at the National Research Council's Herzberg Institute of Astrophysics identified the planet from data taken in 2009 and 2010 using the W.M. Keck Observatory in the K and L spectral bands.[1] They announced their findings on November 22, 2010. A separate work reporting the detection of HR 8799 e, led by Thayne Currie and using the Very Large Telescope, was made public six weeks later.[2] Observations obtained since then with the Large Binocular Telescope show that HR 8799 e has a spectrum and temperature similar to HR 8799 c and d.[3]


In 2013, near infrared spectroscopy from 995 to 1769 nanometers made with the Palomar Obervatory showed evidence of Methane and Acetylene but no Ammonia or Carbon Dioxide. There was no explanation as to why the planet shows strong methane absorption, but the other 3 planets in this system do not, despite all 4 planets having similar atmospheric temperatures.[4]

Artist's impression of HR 8799e.[5]

On 27th March 2019 the European Southern Observatory announced the result of their Very Large Telescope astronomical interferometer (VLTI) imaging of HR 8799 e employing the GRAVITY instrument. This was the first direct observation of any exoplanet using optical interferometry. A spectrum ten times more detailed than earlier observations revealed a complex exoplanetary atmosphere with clouds of iron and silicates swirling in a planet-wide storm. Team leader Sylvestre Lacour said “Our analysis showed that HR8799e has an atmosphere containing far more carbon monoxide than methane — something not expected from equilibrium chemistry. We can best explain this surprising result with high vertical winds within the atmosphere preventing the carbon monoxide from reacting with hydrogen to form methane.”[6][7]



  1. ^ a b c d e f Marois, C.; Zuckerman, B.; Konopacky, Q. M.; MacIntosh, B.; Barman, T. (2010). "Images of a fourth planet orbiting HR 8799". Nature. 468 (7327): 1080–1083. arXiv:1011.4918. Bibcode:2010Natur.468.1080M. doi:10.1038/nature09684. PMID 21150902.
  2. ^ a b Currie, Thayne; et al. (March 2011). "A Combined Subaru/VLT/MMT 1--5 Micron Study of Planets Orbiting HR 8799: Implications for Atmospheric Properties, Masses, and Formation". The Astrophysical Journal. 729 (2): 128. arXiv:1101.1973. Bibcode:2011ApJ...729..128C. doi:10.1088/0004-637x/729/2/128.
  3. ^ a b Skemer, Andrew; et al. (July 2012). "First Light LBT AO Images of HR 8799 bcde at 1.6 and 3.3 μm: New Discrepancies between Young Planets and Old Brown Dwarfs". The Astrophysical Journal. 753 (1): 14. arXiv:1203.2615. Bibcode:2012ApJ...753...14S. doi:10.1088/0004-637x/753/1/14.
  4. ^ Oppenheimer, B. R. (2013). "Reconnaissance of the HR 8799 Exosolar System I: Near IR Spectroscopy". The Astrophysical Journal. 768: 24. arXiv:1303.2627. Bibcode:2013ApJ...768...24O. doi:10.1088/0004-637X/768/1/24.
  5. ^ "GRAVITY instrument breaks new ground in exoplanet imaging - Cutting-edge VLTI instrument reveals details of a storm-wracked exoplanet using optical interferometry". Retrieved 28 March 2019.
  6. ^
  7. ^ European Southern Observatory (27 March 2019). "GRAVITY instrument breaks new ground in exoplanet imaging - Cutting-edge VLTI instrument reveals details of a storm-wracked exoplanet using optical interferometry". EurekAlert!. Retrieved 27 March 2019.

External links[edit]

Coordinates: Sky map 23h 07m 28.7150s, +21° 08′ 03.302″