Hammer projection

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Hammer projection of the world

The Hammer projection is an equal-area map projection described by Ernst Hammer in 1892. Using the same 2:1 elliptical outer shape as the Mollweide projection, Hammer intended to reduce distortion in the regions of the outer meridians, where it is extreme in the Mollweide.

Development[edit]

Directly inspired by the Aitoff projection, Hammer suggested the use of the equatorial form of the Lambert azimuthal equal-area projection instead of Aitoff's use of the azimuthal equidistant projection:

where laeax and laeay are the x and y components of the equatorial Lambert azimuthal equal-area projection. Written out explicitly:

The inverse is calculated with the intermediate variable

The longitude and latitudes can then be calculated by

where λ is the longitude from the central meridian and φ is the latitude.[1][2]

Visually, the Aitoff and Hammer projections are very similar. The Hammer has seen more use because of its equal-area property. The Mollweide projection is another equal-area projection of similar aspect, though with straight parallels of latitude, unlike the Hammer's curved parallels.

Briesemeister[edit]

William A. Briesemeister presented a variant of the Hammer in 1953. In this version, the central meridian is set to 10°E, the coordinate system is rotated to bring the 45°N parallel to the center, and the resulting map is squashed horizontally and reciprocally stretched vertically to achieve a 7:4 aspect ratio instead of the 2:1 of the Hammer. The purpose is to present the land masses more centrally and with lower distortion.[3]

Nordic[edit]

Before projecting to Hammer, John Bartholomew rotated the coordinate system to bring the 45° north parallel to the center, leaving the prime meridian as the central meridian. He called this variant the "Nordic" projection.[3]

See also[edit]

References[edit]

  1. ^ Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 130–133, ISBN 0-226-76747-7.
  2. ^ Weisstein, Eric W. "Hammer–Aitoff Equal-Area Projection." From MathWorld—A Wolfram Web Resource
  3. ^ a b Snyder, John P. (1989). An Album of Map Projections (PDF). p. 162. 

External links[edit]