Harmonic progression (mathematics)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For the musical term, see Chord progression.

In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression. In other words, it is a sequence of the form

 1/a ,\ \frac{1}{a+d}\ , \frac{1}{a+2d}\ , \frac{1}{a+3d}\ , \cdots, \frac{1}{a+kd},

where −1/d is not a natural number and k is a natural number.

(Terms in the form  \frac{x}{y+z}\ can be expressed as  \frac{\frac{x}{y}}{\frac{y+z}{y}} , we can let  \frac{x}{y}=a and  \frac{z}{y}=kd .)

Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

Examples[edit]

12, 6, 4, 3, \tfrac{12}{5}, 2, … , \tfrac{12}{1+n}
10, 30, −30, −10, −6, − \tfrac{30}{7}, … , \tfrac{10}{1-\tfrac{2n}{3}}

Use in geometry[edit]

If collinear points A, B, C, and D are such that D is the harmonic conjugate of C with respect to A and B, then the distances from any one of these points to the three remaining points form harmonic progression.[1][2] Specifically, each of the sequences AC, AB, AD; BC, BA, BD; CA, CD, CB; and DA, DC, DB are harmonic progressions, where each of the distances is signed according to a fixed orientation of the line.

See also[edit]

References[edit]

  1. ^ Chapters on the modern geometry of the point, line, and circle, Vol. II by Richard Townsend (1865) p. 24
  2. ^ Modern geometry of the point, straight line, and circle: an elementary treatise by John Alexander Third (1898) p. 44
  • Mastering Technical Mathematics by Stan Gibilisco, Norman H. Crowhurst, (2007) p. 221
  • Standard mathematical tables by Chemical Rubber Company (1974) p. 102
  • Essentials of algebra for secondary schools by Webster Wells (1897) p. 307