Hartogs' extension theorem

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, precisely in the theory of functions of several complex variables, Hartogs' extension theorem is a statement about the singularities of holomorphic functions of several variables. Informally, it states that the support of the singularities of such functions cannot be compact, therefore the singular set of a function of several complex variables must (loosely speaking) 'go off to infinity' in some direction. More precisely, it shows that the concept of isolated singularity and removable singularity coincide for analytic functions of n > 1 complex variables. A first version of this theorem was proved by Friedrich Hartogs,[1] and as such it is known also as Hartogs' lemma and Hartogs' principle: in earlier Soviet literature,[2] it is also called Osgood-Brown theorem, acknowledging later work by Arthur Barton Brown and William Fogg Osgood.[3] This property of holomorphic functions of several variables is also called Hartogs' phenomenon: however, the locution "Hartogs' phenomenon" is also used to identify the property of solutions of systems of partial differential or convolution equations satisfying Hartogs type theorems.[4]

Historical note[edit]

The original proof was given by Friedrich Hartogs in 1906, using Cauchy's integral formula for functions of several complex variables.[1] Today, usual proofs rely on either Bochner–Martinelli–Koppelman formula or the solution of the inhomogeneous Cauchy–Riemann equations with compact support. The latter approach is due to Leon Ehrenpreis who initiated it in the paper (Ehrenpreis 1961). Yet another very simple proof of this result was given by Gaetano Fichera in the paper (Fichera 1957), by using his solution of the Dirichlet problem for holomorphic functions of several variables and the related concept of CR-function:[5] later he extended the theorem to a certain class of partial differential operators in the paper (Fichera 1983), and his ideas were later further explored by Giuliano Bratti.[6] Also the Japanese school of the theory of partial differential operators worked much on this topic, with notable contributions by Akira Kaneko.[7] Their approach is to use Ehrenpreis' fundamental principle.

Hartogs' phenomenon[edit]

A phenomenon that holds in one variable but does not hold in several variables is called Hartogs' phenomenon, which lead to the notion of this Hartogs' extension theorem and the domain of holomorphy, hence the theory of several complex variables.

For example in two variables, consider the interior domain

H_\varepsilon = \{z=(z_1,z_2)\in\Delta^2:|z_1|<\varepsilon\ \ \text{or}\ \ 1-\varepsilon< |z_2|\}

in the two-dimensional polydisk \Delta^2=\{z\in\mathbb{Z};|z_1|<1,|z_2|<1\} where 0 <\varepsilon < 1 .

Theorem Hartogs (1906): any holomorphic functions f on H_\varepsilon are analytically continued to \Delta^2 . Namely, there is a holomorphic function F on \Delta^2 such that F=f on H_\varepsilon .

In fact, using the Cauchy integral formula we obtain the extended function F , All holomorphic functions are analytically continued to the polydisk, which is restrictly larger than the domain on which the original holomorphic function is defined. Such phenomenon never happen in the case of one variable.

Formal statement[edit]

Let f be a holomorphic function on a set G\K, where G is an open subset of Cn (n ≥ 2) and K is a compact subset of G. If the relative complement G\K is connected, then f can be extended to a unique holomorphic function on G.

Counterexamples in dimension one[edit]

The theorem does not hold when n = 1. To see this, it suffices to consider the function f(z) = z−1, which is clearly holomorphic in C\{0}, but cannot be continued as an holomorphic function on the whole C. Therefore the Hartogs' phenomenon constitutes one elementary phenomenon that emphasizes the difference between the theory of functions of one and several complex variables.


  1. ^ a b See the original paper of Hartogs (1906) and its description in various historical surveys by Osgood (1963, pp. 56–59), Severi (1958, pp. 111–115) and Struppa (1988, pp. 132–134). In particular, in this last reference on p. 132, the Author explicitly writes :-"As it is pointed out in the title of (Hartogs 1906), and as the reader shall soon see, the key tool in the proof is the Cauchy integral formula".
  2. ^ See for example Vladimirov (1966, p. 153), which refers the reader to the book of Fuks (1963, p. 284) for a proof (however, in the former reference it is incorrectly stated that the proof is on page 324).
  3. ^ See Brown (1936) and Osgood (1929).
  4. ^ See Fichera (1983) and Bratti (1986a) (Bratti 1986b).
  5. ^ Fichera's prof as well as his epoch making paper (Fichera 1957) seem to have been overlooked by many specialists of the theory of functions of several complex variables: see Range (2002) for the correct attribution of many important theorems in this field.
  6. ^ See Bratti (1986a) (Bratti 1986b).
  7. ^ See his paper (Kaneko 1973) and the references therein.

Historical references[edit]


External links[edit]