Hash function security summary

From Wikipedia, the free encyclopedia
Jump to: navigation, search

This article summarizes publicly known attacks against cryptographic hash functions. Note that not all entries may be up to date. For a summary of other hash function parameters, see comparison of cryptographic hash functions.

Table color key[edit]

  No known successful attacks — attack only breaks a reduced version of the hash
  Theoretical break — attack breaks all rounds and has lower complexity than security claim
  Attack demonstrated in practice

Common hash functions[edit]

Collision resistance[edit]

Main article: Collision attack
Hash function Security claim Best attack Publish date Comment
MD5 264 218 time 2013-03-25 This attack takes seconds on a regular PC. Two-block collisions in 218, single-block collisions in 241.[1]
SHA-1 280 263.1 2017-02-23 Paper.[2]
SHA256 2128 31 of 64 rounds (265.5) 2013-05-28 Two-block collision.[3]
SHA512 2256 24 of 80 rounds (232.5) 2008-11-25 Paper.[4]
BLAKE2s 2128 2.5 of 10 rounds (2112) 2009-05-26 Paper.[5]
BLAKE2b 2256 2.5 of 12 rounds (2224) 2009-05-26 Paper.[5]

Chosen prefix collision attack[edit]

Hash function Security claim Best attack Publish date Comment
MD5 264 239 2009-06-16 This attack takes hours on a regular PC.[6]
SHA-1 280 277.1 2012-06-19 Paper.[7]
SHA256 2128
SHA512 2256
BLAKE2s 2128
BLAKE2b 2256

Preimage resistance[edit]

Main article: Preimage attack
Hash function Security claim Best attack Publish date Comment
MD5 2128 2123.4 2009-04-27 Paper.[8]
SHA-1 2160 45 of 80 rounds 2008-08-17 Paper.[9]
SHA256 2256 43 of 64 rounds (2254.9 time, 26 memory) 2009-12-10 Paper.[10]
SHA512 2512 46 of 80 rounds (2511.5 time, 26 memory) 2008-11-25 Paper,[11] updated version.[10]
BLAKE2s 2256 2.5 of 10 rounds (2241) 2009-05-26 Paper.[5]
BLAKE2b 2256 2.5 of 12 rounds (2481) 2009-05-26 Paper.[5]

Less common hash functions[edit]

Collision resistance[edit]

Hash function Security claim Best attack Publish date Comment
GOST 2128 2105 2008-08-18 Paper.[12]
HAVAL-128 264 27 2004-08-17 Collisions originally reported in 2004,[13] followed up by cryptanalysis paper in 2005.[14]
MD2 264 263.3 time, 252 memory 2009 Slightly less computationally expensive than a birthday attack,[15] but for practical purposes, memory requirements make it more expensive.
MD4 264 3 operations 2007-03-22 Finding collisions almost as fast as verifying them.[16]
PANAMA 2128 26 2007-04-04 Paper,[17] improvement of an earlier theoretical attack from 2001.[18]
RIPEMD (original) 264 218 time 2004-08-17 Collisions originally reported in 2004,[13] followed up by cryptanalysis paper in 2005.[19]
RadioGatún 2608 * 2704 2008-12-04 For a word size w between 1-64 bits, the hash provides a collision security claim of 28.5w. For any value, the attack can find a collision in 211w time.[20]
RIPEMD-160 280 48 of 80 rounds (251 time) 2006 Paper.[21]
SHA-0 280 233.6 time 2008-02-11 Two-block collisions using boomerang attack. Attack takes estimated 1 hour on an average PC.[22]
Streebog 2256 9.5 rounds of 12 (2176 time, 2128 memory) 2013-09-10 Rebound attack.[23]
Whirlpool 2256 4.5 of 10 rounds (2120 time) 2009-02-24 Rebound attack.[24]

Preimage resistance[edit]

Hash function Security claim Best attack Publish date Comment
GOST 2256 2192 2008-08-18 Paper.[12]
MD2 2128 273 time, 273 memory 2008 Paper.[25]
MD4 2128 2102 time, 233 memory 2008-02-10 Paper.[26]
RIPEMD (original) 2128 35 of 48 rounds 2011 Paper.[27]
RIPEMD-128 2128 35 of 64 rounds
RIPEMD-160 2160 31 of 80 rounds
Streebog 2512 2266 time, 2259 data 2014-08-29 The paper presents two second-preimage attacks with variable data requirements.[28]
Tiger 2192 2188.8 time, 28 memory 2010-12-06 Paper.[29]

See also[edit]

References[edit]

  1. ^ Tao Xie; Fanbao Liu; Dengguo Feng (25 March 2013). "Fast Collision Attack on MD5". 
  2. ^ Marc Stevens; Elie Bursztein; Pierre Karpman; Ange Albertini; Yarik Markov (2017-02-23). "The first collision for full SHA-1" (PDF). 
  3. ^ Florian Mendel, Tomislav Nad, Martin Schläffer (2013-05-28). Improving Local Collisions: New Attacks on Reduced SHA-256. Eurocrypt 2013. 
  4. ^ Somitra Kumar Sanadhya; Palash Sarkar (2008-11-25). New Collision Attacks against Up to 24-Step SHA-2. Indocrypt 2008. 
  5. ^ a b c d LI Ji; XU Liangyu (2009-05-26). "Attacks on Round-Reduced BLAKE". 
  6. ^ Marc Stevens; Arjen Lenstra; Benne de Weger (2009-06-16). "Chosen-prefix Collisions for MD5 and Applications" (PDF). 
  7. ^ Marc Stevens (2012-06-19). "Attacks on Hash Functions and Applications" (PDF). PhD thesis. 
  8. ^ Yu Sasaki; Kazumaro Aoki (2009-04-27). Finding Preimages in Full MD5 Faster Than Exhaustive Search. Eurocrypt 2009. 
  9. ^ Christophe De Cannière; Christian Rechberger (2008-08-17). Preimages for Reduced SHA-0 and SHA-1. Crypto 2008. 
  10. ^ a b Kazumaro Aoki; Jian Guo; Krystian Matusiewicz; Yu Sasaki; Lei Wang (2009-12-10). Preimages for Step-Reduced SHA-2. Asiacrypt 2009. 
  11. ^ Yu Sasaki; Lei Wang; Kazumaro Aoki (2008-11-25). "Preimage Attacks on 41-Step SHA-256 and 46-Step SHA-512". 
  12. ^ a b Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak, Janusz Szmidt (2008-08-18). Cryptanalysis of the GOST Hash Function. Crypto 2008. 
  13. ^ a b Xiaoyun Wang, Dengguo Feng, Xuejia Lai, Hongbo Yu (2004-08-17). "Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD". 
  14. ^ Xiaoyun Wang, Dengguo Feng, Xiuyuan Yu (October 2005). "An attack on hash function HAVAL-128" (PDF). Science in China Series F: Information Sciences. 48 (5): 545–556. doi:10.1360/122004-107. 
  15. ^ Lars R. Knudsen; John Erik Mathiassen; Frédéric Muller; Søren S. Thomsen (January 2010). "Cryptanalysis of MD2". Journal of Cryptology. 23 (1): 72–90. doi:10.1007/s00145-009-9054-1. 
  16. ^ Yu Sasaki, Yusuke Naito, Noboru Kunihiro, Kazuo Ohta (2007-03-22). "Improved Collision Attacks on MD4 and MD5". IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. E90-A (1): 36–47. doi:10.1093/ietfec/e90-a.1.36. 
  17. ^ Joan Daemen, Gilles Van Assche (2007-04-04). Producing Collisions for Panama, Instantaneously. FSE 2007. 
  18. ^ Vincent Rijmen, Bart Van Rompay, Bart Preneel, Joos Vandewalle (2001). Producing Collisions for PANAMA. FSE 2001. 
  19. ^ Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu (2005-05-23). Cryptanalysis of the Hash Functions MD4 and RIPEMD. Eurocrypt 2005. 
  20. ^ Thomas Fuhr; Thomas Peyrin (2008-12-04). Cryptanalysis of RadioGatun. FSE 2009. 
  21. ^ Florian Mendel, Norbert Pramstaller, Christian Rechberger, Vincent Rijmen (2006). On the Collision Resistance of RIPEMD-160. ISC 2006. 
  22. ^ Stéphane Manuel; Thomas Peyrin (2008-02-11). Collisions on SHA-0 in One Hour. FSE 2008. 
  23. ^ Zongyue Wang, Hongbo Yu, Xiaoyun Wang (2013-09-10). "Cryptanalysis of GOST R hash function". Information Processing Letters. 114 (12): 655–662. doi:10.1016/j.ipl.2014.07.007. 
  24. ^ Florian Mendel, Christian Rechberger, Martin Schläffer, Søren S. Thomsen (2009-02-24). The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl (PDF). FSE 2009. 
  25. ^ Søren S. Thomsen (2008). "An improved preimage attack on MD2". 
  26. ^ Gaëtan Leurent (2008-02-10). MD4 is Not One-Way (PDF). FSE 2008. 
  27. ^ Chiaki Ohtahara, Yu Sasaki, Takeshi Shimoyama (2011). Preimage Attacks on Step-Reduced RIPEMD-128 and RIPEMD-160. ISC 2011. 
  28. ^ Jian Guo, Jérémy Jean, Gaëtan Leurent, Thomas Peyrin, Lei Wang (2014-08-29). The Usage of Counter Revisited: Second-Preimage Attack on New Russian Standardized Hash Function. SAC 2014. 
  29. ^ Jian Guo, San Ling, Christian Rechberger, Huaxiong Wang (2010-12-06). Advanced Meet-in-the-Middle Preimage Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2. Asiacrypt 2010. pp. 12–17. 

External links[edit]