Henri Moissan

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Henri Moissan
Henri Moissan HiRes.jpg
Moissan in 1906
Born
Ferdinand Frédéric Henri Moissan

(1852-09-28)28 September 1852
Paris, France
Died20 February 1907(1907-02-20) (aged 54)
Paris, France
NationalityFrench
Known forIsolation of fluorine
SpouseMarie Léonie Lugan Moissan (m. 1882; 1 child)
AwardsDavy Medal (1896)
Elliott Cresson Medal (1898)
Nobel Prize for Chemistry (1906)
Scientific career
FieldsChemistry
InstitutionsSorbonne
Doctoral advisorHenri Debray[1]
Doctoral studentsPaul Lebeau
Maurice Meslans
Signature
Henri Moissan signature 2.jpg

Ferdinand Frédéric Henri Moissan (28 September 1852 – 20 February 1907) was a French chemist and pharmacist who won the 1906 Nobel Prize in Chemistry for his work in isolating fluorine from its compounds. Moissan was one of the original members of the International Atomic Weights Committee.[2][3]

Biography[edit]

Early life and education[edit]

Moissan was born in Paris on 28 September 1852, the son of a minor officer of the eastern railway company, Francis Ferdinand Moissan, and a seamstress, Joséphine Améraldine (née Mitel).[4] His mother was of Jewish descent,[5][6] his father was not.[5][6] In 1864 they moved to Meaux, where he attended the local school. In 1870 he left the school without the grade universitaire necessary to attend university.

Scientific career[edit]

Moissan became a trainee in pharmacy in 1871 and in 1872 he began working for a chemist in Paris, where he was able to save a person poisoned with arsenic. He decided to study chemistry and began first in the laboratory of Edmond Frémy at the Musée d’Histoire Naturelle, and later in that of Pierre Paul Dehérain at the École Pratique des Haute Études.[7][8] Dehérain persuaded him to pursue an academic career. He passed the baccalauréat, which was necessary to study at university, in 1874 after an earlier failed attempt. He also became qualified as first-class pharmacist at the École Supérieure de Pharmacie in 1879, and received his doctoral degree there in 1880.[8]

He soon climbed through the ranks of the School of Pharmacy, and was appointed Assistant Lecturer, Senior Demonstrator, and finally Professor of Toxicology by 1886. He took the Chair of Inorganic Chemistry in 1899. The following year, he succeeded Louis Joseph Troost as Professor of Inorganic Chemistry at the Sorbonne.[9] During his time in Paris he became a friend of the chemist Alexandre Léon Étard and the botanist Vasque.[10] His marriage, to Léonie Lugan, took place in 1882. They had a son in 1885, named Louis Ferdinand Henri.

Death[edit]

He died suddenly in Paris in February 1907, shortly after his return from receiving the Nobel Prize in Stockholm.[9] His death was attributed to an acute case of appendicitis.

Awards and honors[edit]

During his extensive career, Moissan authored more than three hundred publications, won the 1906 Nobel Prize in Chemistry for the first isolation of fluorine, in addition to the Prix Lucaze, the Davy Medal, the Hofmann Medal, and the Elliott Cresson Medal. He was elected fellow of the Royal Society and The Chemical Society of London, served on the International Atomic Weights Committee and made a commandeur in the Légion d'honneur.[9]

Research[edit]

Moissan published his first scientific paper, about carbon dioxide and oxygen metabolism in plants, with Dehérain in 1874. He left plant physiology and then turned towards inorganic chemistry; subsequently his research on pyrophoric iron was well received by the two most prominent French inorganic chemists of that time, Henri Étienne Sainte-Claire Deville and Jules Henri Debray. After Moissan received his Ph.D. on cyanogen and its reactions to form cyanures in 1880, his friend Landrine offered him a position at an analytic laboratory.[4]

Isolation of Fluorine[edit]

Moissan's 1892 observation of the color of fluorine gas (2), compared to air (1) and chlorine (3)

During the 1880s, Moissan focused on fluorine chemistry and especially the production of fluorine itself. The existence of the element had been well known for many years, but all attempts to isolate it had failed, and some experimenters had died in the attempt.[11][12] He had no laboratory of his own, but borrowed lab space from others, including Charles Friedel. There he had access to a strong battery consisting of 90 Bunsen cells which made it possible to observe a gas produced by the electrolysis of molten arsenic trichloride; the gas was reabsorbed by the arsenic trichloride.

Moissan eventually succeeded in isolating fluorine in 1886 by the electrolysis of a solution of potassium hydrogen difluoride (KHF2) in liquid hydrogen fluoride (HF). The mixture was necessary because hydrogen fluoride is a nonconductor. The device was built with platinum-iridium electrodes in a platinum holder and the apparatus was cooled to −50 °C. The result was the complete separation of the hydrogen produced at the negative electrode from the fluorine produced at the positive one, first achieved on 26 June 1886.[13][14] This remains the current standard method for commercial fluorine production.[15] The French Academy of Science sent three representatives, Marcellin Berthelot, Henri Debray, and Edmond Frémy, to verify the results, but Moissan was unable to reproduce them, owing to the absence from the hydrogen fluoride of traces of potassium fluoride present in the previous experiments. After resolving the problem and demonstrating the production of fluorine several times, he was awarded a prize of 10,000 francs. For the first successful isolation, he was awarded the 1906 Nobel Prize in Chemistry.[9] Following his grand achievement, his research focused on characterizing fluorine's chemistry. He discovered numerous fluorine compounds, such as (together with Paul Lebeau) sulfur hexafluoride in 1901.

Further studies[edit]

Moissan attempting to create synthetic diamonds using an electric arc furnace

Moissan contributed to the development of the electric arc furnace and attempted to use pressure to produce synthetic diamonds[16] from the more common form of carbon. He also used the furnace to synthesize the borides and carbides of numerous elements.[7] In 1893, Moissan began studying fragments of a meteorite found in Meteor Crater near Diablo Canyon in Arizona. In these fragments he discovered minute quantities of a new mineral and, after extensive research, Moissan concluded that this mineral was made of silicon carbide. In 1905, this mineral was named moissanite, in his honor. In 1903 Moissan was elected member of the International Atomic Weights Committee where he served until his death.[17]

References[edit]

  1. ^ Fechete, Ioana (September 2016). "Ferdinand Frédéric Henri Moissan: The first French Nobel Prize winner in chemistry or nec pluribus impar". Comptes Rendus Chimie. 19 (9): 1027–1032. doi:10.1016/j.crci.2016.06.005.
  2. ^ Fechete, Ioana (2016). "Ferdinand Frédéric Henri Moissan: The first French Nobel Prize winner in chemistry or nec pluribus impar". Comptes Rendus Chimie. 19 (9): 1027–32. doi:10.1016/j.crci.2016.06.005.
  3. ^ Viel, C. (January 2008). "Henri Moissan : l'homme, le collectionneur, l'enseignant" [Henri Moissan: the man, the collector, the teacher]. Annales Pharmaceutiques Françaises (in French). 66 (1): 34–38. doi:10.1016/j.pharma.2007.12.006. PMID 18435984.
  4. ^ a b Greffe, Florence (18 November 2004). "Fonds 62 J HENRI MOISSAN" (PDF) (in French). Institut de France Academie des Sciences. Archived from the original (PDF) on 9 November 2013. Retrieved 3 March 2021.
  5. ^ a b Wisniak, Jaime (26 August 2018). "Henri Moissan. The discoverer of fluorine". Educación Química. 13 (4): 267. doi:10.22201/fq.18708404e.2002.4.66285. S2CID 92299077.
  6. ^ a b Werner, Eric; Runes, Dagobert D. (March 1951). "The Hebrew Impact on Western Civilization". Notes. 8 (2): 354. doi:10.2307/890014. JSTOR 890014.
  7. ^ a b "Henri Moissan – Facts". NobelPrize.org. Retrieved 6 May 2020.
  8. ^ a b Tressaud, Alain (20 October 2006). "Henri Moissan: Winner of the Nobel Prize for Chemistry 1906". Angewandte Chemie International Edition. 45 (41): 6792–6796. doi:10.1002/anie.200601600. Retrieved 28 June 2022.
  9. ^ a b c d Nobel Lectures, Chemistry 1901–1921. Amsterdam: Elsevier Publishing Company. 1966. Retrieved 26 June 2022.
  10. ^ Lafont, O. (1 January 2008). "De l'apprentissage au Prix Nobel : le fabuleux destin d'Henri Moissan" [From apprenticeship to Nobel Prize: Henri Moissan's fabulous destiny]. Annales Pharmaceutiques Françaises (in French). 66 (1): 28–33. doi:10.1016/j.pharma.2007.12.004. PMID 18435983.
  11. ^ Toon, Richard (1 September 2011). "The discovery of fluorine". Education in Chemistry. Vol. 48, no. 5. Royal Society of Chemistry. pp. 148–151.
  12. ^ Weeks, Mary Elvira (1932). "The discovery of the elements. XVII. The halogen family". Journal of Chemical Education. 9 (11): 1915–1939. Bibcode:1932JChEd...9.1915W. doi:10.1021/ed009p1915.
  13. ^ H. Moissan (1886). "Action d'un courant électrique sur l'acide fluorhydrique anhydre" [The action of an electric current on anhydrous hydrofluoric acid]. Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French). 102: 1543–1544.
  14. ^ H. Moissan (1886). "Sur la décomposition de l'acide fluorhydrique par un courant électrique" [On the decomposition of hydrofluoric acid by an electric current]. Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French). 103: 202.
  15. ^ Jaccaud, M; Faron, R; Deviliers, D; Romano, R (1988). Ulmann's Encyclopedia of Organic Chemistry. Veinheim: VCH. doi:10.1021/op970020u.
  16. ^ Moissan, Henri (1893). "Le diamant : conférence faite à la Société des amis de la science le 17 mai 1893" [The diamond: lecture to the Society of Friends of Science 17 May 1893] (in French). Europeana. Archived from the original on 13 February 2013. Retrieved 27 June 2012.
  17. ^ "Atomic Weights and the International Committee—A Historical Review". Chemistry International. 2004.

Further reading[edit]

External links[edit]