# Mnemonic major system

(Redirected from Herigone's mnemonic system)

The major system (also called the phonetic number system, phonetic mnemonic system, or Herigone's mnemonic system) is a mnemonic technique used to aid in memorizing numbers.

The system works by converting numbers into consonant sounds, then into words by adding vowels. The system works on the principle that images can be remembered more easily than numbers.

One notable explanation of this system was given in Martin Gardner's book The First Scientific American Book of Mathematical Puzzles and Diversions (just Mathematical Puzzles and Diversions in the UK edition), which has since been republished in The New Martin Gardner Mathematical Library as Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi). In this, Gardner incorrectly attributes the system to Lewis Carroll (Carroll's system had the same basis but different associations).[citation needed]

## The system

Each numeral is associated with one or more consonants. Vowels and the consonants w, h, and y are ignored. These can be used as "fillers" to make sensible words from the resulting consonant sequences. A standard mapping[1] is:

Numeral Sounds (IPA) Commonly associated letters Mnemonic and remarks
0 /s/, /z/ s, soft c, z, x (in xylophone) Zero begins with z (and /z/). Upper case S and Z, as well as lower case s and z, have zero vertical strokes each, as with the numeral 0. The alveolar fricatives /s/ and /z/ form a voiceless and voiced pair.
1 /t/, /d/, (/θ/, /ð/) t, d, th (in thing and this) Upper case T and D, as well as lower case t and d have one vertical stroke each, as with the numeral 1. The alveolar stops /t/ and /d/ form a voiceless and voiced pair, as do the similar-sounding dental fricatives /θ/ and /ð/, though some variant systems may omit the latter pair.
2 /n/ n Upper case N and lower case n each have two vertical strokes and two points on the baseline.
3 /m/ m Lower case m has three vertical strokes. Both upper case M and lower case m each have three points on the baseline and look like the numeral 3 on its side.
4 /r/ r, l (in colonel) Four ends with r (and /r/ in rhotic accents).
5 /l/ l L is the Roman numeral for 50. Among the five digits of one's left hand, the thumb and index fingers also form an L.
6 /tʃ/, /dʒ/, /ʃ/, /ʒ/ ch (in cheese and chef), j, soft g, sh, c (in cello and special), cz (in Czech), s (in tissue and vision), sc (in fascist), sch (in schwa and eschew), t (in ration and equation), tsch (in putsch), z (in seizure) Upper case G and lower case g look like the numeral 6 flipped horizontally and rotated 180° respectively. Lower case script j tends to have a lower loop, like the numeral 6. In some serif fonts, upper case CH, SH and ZH each have six serifs. The postalveolar affricates /tʃ/ and /dʒ/ form a voiceless and voiced pair, as do the similar-sounding postalveolar fricatives /ʃ/ and /ʒ/. CHurch has six letters.
7 /k/, /ɡ/ k, hard c, q, ch (in loch), hard g Both upper case K and lower case k look like two small 7s on their sides. In some fonts, the lower-right part of the upper case G looks like a 7. G is also the 7th letter of the alphabet. The velar stops /k/ and /g/ form a voiceless and voiced pair.
8 /f/, /v/ f, ph (in phone), v, gh (in laugh) Lower case script f, which tends to have an upper and lower loop, looks like a figure-8. The labiodental fricatives /f/ and /v/ form a voiceless and voiced pair.
9 /p/, /b/ p, b, gh (in hiccough) Upper case P and lower case p look like the numeral 9 flipped horizontally. Lower case b looks like the numeral 9 turned 180°. The labial stops /p/ and /b/ form a voiceless and voiced pair.
Unassigned /h/, /j/, /w/, vowel sounds h, y, w, a, e, i, o, u, silent letters, c (in packet and chutzpah), d (in judge), j (in Hallelujah and jalapeno), ll (in tortilla), the first p in sapphire, t (in match), one of doubled letters in most contexts Vowel sounds, semivowels (/j/ and /w/) and /h/ do not correspond to any number. They can appear anywhere in a word without changing its number value.
(2, 27 or 7) /ŋ/ ng, n before k, hard c, q, hard g or x Variant systems differ about whether /ŋ/ should encode 2 and classified together with /n/, 7 and classified together with /k/ and /g/ or even 27 (e.g. ring could be 42, 47 or 427). When a /k/ and /g/ is pronounced separately after the /ŋ/, variant systems that chose /ŋ/ to be 27 also disagree if an extra 7 should be written (e.g. finger could be 8274 or 82774, or if /ŋ/ is chosen to be 7, 8774).

The groups of similar sounds and the rules for applying the mappings are almost always fixed, but other hooks and mappings can be used as long as the person using the system can remember them and apply them consistently.

Each numeral maps to a set of similar sounds with similar mouth and tongue positions. The link is phonetic, that is to say, it is the consonant sounds that matter, not the spelling. Therefore, a word like action would encode the number 762 (/k/-/ʃ/-/n/), not 712 (k-t-n). Double letters are disregarded when not pronounced separately, e.g. muddy encodes 31 (/m/-/d/), not 311, but midday encodes 311 (/m/-/d/-/d/) while accept encodes 7091 (/k/-/s/-/p/-/t/) since the ds and cs are pronounced separately. x encodes 70 when pronounced as /ks/ or /gz/ (e.g. in fax and exam) and 76 when pronounced /kʃ/ or /gʒ/ (e.g. in action or luxury); z encodes 10 when pronounced /ts/ (e.g. in pizza). In ghost (701, /g/-/s/-/t/) and enough (28, /n/-/f/), gh is being encoded by different numerals. Usually, a rhotic accent is assumed, e.g. fear would encode 84 (/f/-/r/) rather than 8 (/f/).

Often the mapping is compact. Hindquarters, for example, translates unambiguously to 2174140 (/n/-/d/-/k/-/r/-/t/-/r/-/z/), which amounts to seven digits encoded by eight letters, and can be easily visualized.

Each numeral maps to a set of similar sounds with similar mouth and tongue positions. For most people it would be easier to remember 3.1415927 (an approximation of the mathematical constant pi) as:

meteor (314, /m/-/t/-/r/)
tail (15, /t/-/l/)
pink (927, /p/-/ŋ/-/k/, and taking /ŋ/ to be 2)

Short term visual memory of imagined scenes allows large numbers of digits to be memorized with ease, though usually only for a short time.

Whilst this is unwieldy at first, with practice it can become a very effective technique.[citation needed] Longer-term memory may require the formulation of more object-related mnemonics with greater logical connection, perhaps forming grammatical sentences that apply to the matter rather than just strings of images.

The system can be employed with phone numbers. One would typically make up multiple words, preferably a sentence, or an ordered sequence of images featuring the owner of the number.

The Major System can be combined with a peg system for remembering lists, and is sometimes used also as a method of generating the pegs. It can also be combined with other memory techniques such as rhyming, substitute words, or the method of loci. Repetition and concentration using the ordinary memory is still required.

An advantage of the major system is that it is possible to use a computer to automatically translate the number into a set of words. One can then pick the best of several alternatives. Such programs include "Numzi"[2] "Rememberg"[3] "Fonbee",[4] the freeware "2Know",[5] and the website "pinfruit".[6]

### Example words

Some of these example words may belong to more than one word category.

1-digit pegs
0 1 2 3 4 5 6 7 8 9
noun hose hat hen home arrow whale shoe cow hoof pie
verb sew hate know aim row heal chew hook view buy
adjective easy hot new yummy hairy oily itchy gay heavy happy
2-digit pegs
00 01 02 03 04 05 06 07 08 09
noun sauce seed sun sumo sierra soil sewage sky sofa soap
verb assess swat assign assume sorrow sell switch soak save sob
10 11 12 13 14 15 16 17 18 19
noun daisy tattoo tuna dome diary tail dish dog dove tuba
verb tease edit widen time draw tell teach take defy type
adjective dizzy tight wooden tame dry tall whitish thick deaf deep
20 21 22 23 24 25 26 27 28 29
noun nose net onion enemy winery nail nacho neck knife honeybee
verb ionize unite nanny[b] name honour[a] inhale enjoy knock envy nab
adjective noisy neat neon numb narrow annual nudgy naggy naïve wannabe
30 31 32 33 34 35 36 37 38 39
noun mouse meadow moon mummy emery mole match mug movie map
verb amuse meet mine mime marry mail mash mock move mop
adjective messy mute mean mum[c] merry male mushy mucky mauve wimpy
40 41 42 43 44 45 46 47 48 49
noun rice road urine rum aurora railway roach rag roof rope
verb erase read ruin ram rear[a] rule reach rake arrive wrap
50 51 52 53 54 55 56 57 58 59
noun louse lady lion lime lorry lily leech leg lava lip
verb lose let align loom lure[a] lull latch lick love help
adjective lazy elite alien lame leery loyal lush lucky leafy loopy
60 61 62 63 64 65 66 67 68 69
noun cheese cheetah chin gem shrew chilli cha-cha chick chef jeep
verb chase cheat chain jam jury chill judge check achieve chop
adjective choosy chatty shiny sham cherry jolly Jewish shaky chief cheap
70 71 72 73 74 75 76 77 78 79
noun goose cat coin game crow clay cage cake cave cube
verb kiss quote weaken comb carry kill coach cook give copy
adjective cosy good keen gummy grey cool catchy quick goofy agape[d]
80 81 82 83 84 85 86 87 88 89
noun vase video fan ovum fairy fool veggie fig fife [e] vibe
verb fuse fight fine fume fry fly fetch fake viva [f] fob[g]
adjective fussy fat funny foamy furry foul fishy foggy fave fab
90 91 92 93 94 95 96 97 98 99
noun boss bead pony puma berry bell pouch bike beef pipe
verb oppose bite ban bomb bury peel patch poke pave pop
• ^a Assumes a rhotic accent
• ^b nanny (verb): to be overprotective towards[7]
• ^c mum (adjective): silent; not saying a word[8]
• ^d agape (adjective): with the mouth wide open, as in wonder, surprise, or eagerness[9]
• ^e fife (noun): a high-pitched transverse flute used commonly in military and marching musical groups[10]
• ^f viva (verb): to examine orally[11]
• ^g fob (verb), archaic: to cheat; deceive[12]

## History

A different memory system, the method of loci, was taught to schoolchildren for centuries, at least until 1584, "when Puritan reformers declared it unholy for encouraging bizarre and irreverent images."[13] The same objection can be made over the major system, with or without the method of loci. Mental images may be easier to remember if they are insulting, violent, or obscene (see Von Restorff effect).

Pierre Hérigone (1580–1643) was a French mathematician and astronomer and devised the earliest version of the major system. The major system was further developed by Stanislaus Mink von Wennsshein 300 years ago. It was later elaborated upon by other users. In 1730, Richard Grey set forth a complicated system that used both consonants and vowels to represent the digits. In 1808 Gregor von Feinaigle introduced the improvement of representing the digits by consonant sounds (but reversed the values of 8 and 9 compared to those listed above).

In 1825 Aimé Paris published the first known version of the major system in its modern form.[14]

In 1844 Francis Fauvel Gouraud (1808-1847) delivered a series of lectures introducing his mnemonic system which was based on Aimé Paris' version. The lectures drew some of the largest crowds ever assembled to hear lectures of a "scientific" nature up to that time. This series of lectures was later published as Phreno-Mnemotechny or The Art of Memory in 1845 and his system received wide acclaim. According to Gouraud, Richard Grey indicated that a discussion on Hebrew linguistics in William Beveridge's Institutionum chronotogicarum libri duo, una cum totidem arithmetices chronologicæ libellis (London, 1669) inspired him to create his system of mnemotechniques which later evolved in to the major system.[15]

The system described in this article would again be popularized by Harry Lorayne, a best selling contemporary author on memory.

The name "major system" refers to Major Beniowski, who published a version of the system in his book, The Anti-Absurd or Phrenotypic English Pronouncing and Orthographical Dictionary.[16]

There is a reasonable historical possibility that the roots of the Major System are entangled with older systems of Shorthand. It is certainly the case that the underlying structure of the Major System has a direct overlap with Gregg shorthand, which was a popular shorthand system in the late 1800s and early 1900s.[17]

Phonetic number memorization systems also occur in other parts of the world, such as the Katapayadi system going back to at least the 7th Century in India.

## Practice

Memory feats centred around numbers can be performed by experts who have learned a 'vocabulary' of at least 1 image for every 1 and 2 digit number which can be combined to form narratives. To learn a vocabulary of 3 digit numbers is harder because for each extra digit 10 times more images need to be learned, but many mnemonists use a set of 1000 images. Combination of images into a narrative is easier to do rapidly than is forming a coherent, grammatical sentence. This pre-memorisation and practice at forming images reduces the time required to think up a good imaginary object and create a strong memorable impression of it. The best words for this purpose are usually nouns, especially those for distinctive objects which make a strong impression on a variety of senses (e.g. a "Lime" for 53, its taste, its smell, its colour and even its texture are distinctive) or which move (like an "arrow" for 4). For basic proficiency a large vocabulary of image words isn't really necessary since, when the table above is reliably learned, it is easy to form your own words ad hoc.

## Indexing sequences

Mnemonics often centre around learning a complete sequence where all objects in that sequence that come before the one you are trying to recall must be recalled first. For instance, if you were using the mnemonic "Richard of York gave battle in vain" for the colours of the rainbow; (red, orange, yellow, green, blue, indigo and violet) to remember what colour comes after indigo you would have to recall the whole sequence. For a short sequence this may be trivial; for longer lists, it can become complicated and error-prone.

A good example would be in recalling what is the 53rd element of the periodic table. It might be possible for some people to construct and then learn a string of 53 or more items which you have substituted for the elements and then to recall them one by one, counting them off as you go, but it would be a great deal easier and less laborious/tedious to directly associate element 53 with, for example, a lime (a suitable mnemonic for 53) recalling some prior imagining of yours regarding a mishap where lime juice gets into one's eye - "eye" sounding like "I", the symbol for Iodine. This allows for random access directly to the item, without the need for recalling any previous items.

If you were remembering element 54 in the process of recalling the periodic table you could then recall an image for 54, for instance thinking of a friend called "Laura" (54) in the lotus position looking very Zen-like in order to remind yourself that element 54 is Xenon.

This is an example of combining the Major System with the peg system.

## References

1. ^ Hale-Evans, Ron (February 2006). Mind Performance Hacks (1 ed.). Sebastopol, CA: O'Reilly. p. 14. ISBN 0-596-10153-8.
2. ^ Numzi mnemonic search engine (bi-directional)
3. ^ Rememberg online mnemonic search engine
4. ^ Fonbee Mnemonic Major System Encoder
5. ^ 2Know Mnemonic Software
6. ^ Web application for the mnemonic major system
7. ^ "Nanny". Retrieved 2015-06-10.
8. ^ "Mum". Retrieved 2015-06-10.
9. ^ "Agape". Retrieved 2015-06-10.
10. ^ "Fife". Retrieved 2015-06-10.
11. ^ "Viva". Retrieved 2015-06-10.
12. ^ "Fob". Retrieved 2015-06-10.
13. ^ Brown, Derren (2006), Tricks of the Mind, Transworld Publishers, ISBN 978-1-905026-26-5.
14. ^ History of the Major System
15. ^ Fauvel-Gouraud, Francis. Phreno-mnemotechny: Or, The Art of Memory. pp. 61–62.
16. ^ History of the Major System
17. ^ The Mnemonic Major System and Gregg Shorthand Have the Same Underlying Structure