Holographic sensor

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A holographic sensor is a device that comprises a hologram embedded in a smart material that detects certain molecules or metabolites.[1] This detection is usually a chemical interaction that is transduced as a change in one of the properties of the holographic reflection (as in the Bragg reflector), either refractive index or spacing between the holographic fringes.[2] The specificity of the sensor can be controlled by adding molecules in the polymer film that selectively interacts with the molecules of interest.

A holographic sensor aims to integrate the sensor component, the transducer and the display in one device for fast reading of molecular concentrations based in colorful reflections or wavelengths.[3]

Certain molecules that mimic biomolecule active sites or binding sites can be incorporated into the polymer that forms the holographic film in order to make the holographic sensors selective and/or sensitive to certain medical important molecules like glucose, etc.

The holographic sensors can be read from a fair distance[quantify] because the transducer element is light that has been refracted and reflected by the holographic grating embedded in the sensor. Therefore, they can be used in industrial applications where non-contact with the sensor is required. Other applications for holographic sensors are anti counterfeiting [4]

Metabolites[edit]

Some of the metabolites detected by a holographic sensor are:

References[edit]

  1. ^ AK Yetisen; I Naydenova; F da Cruz Vasconcellos; J Blyth; CR Lowe (2014). "Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and their Applications.". Chemical Reviews 114: 10654–96. doi:10.1021/cr500116a. PMID 25211200. 
  2. ^ AK Yetisen; Y Montelongo; FC Vasconcellos; JL Martinez-Hurtado; S Neupane; H Butt; MM Qasim; J Blyth; K Burling; JB Carmody; M Evans; TD Wilkinson; LT Kubota; MJ Monteiro; CR Lowe (2014). "Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor.". Nano Letters 14: 3587–3593. Bibcode:2014NanoL..14.3587Y. doi:10.1021/nl5012504. 
  3. ^ AK Yetisen; H Butt; F da Cruz Vasconcellos; Y Montelongo; CAB Davidson; J Blyth; JB Carmody; S Vignolini; U Steiner; JJ Baumberg; TD Wilkinson; CR Lowe (2014). "Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors.". Advanced Optical Materials 2: 250–254. doi:10.1002/adom.201300375. 
  4. ^ FC Vasconcellos; AK Yetisen; Y Montelongo; H Butt; A Grigore; CAB Davidson; J Blyth; MJ Monteiro; TD Wilkinson; CR Lowe (2014). "Printable Surface Holograms via Laser Ablation.". ACS Photonics 1: 489–495. doi:10.1021/ph400149m. 
  5. ^ Hurtado, J. L. Martinez; Lowe, C. R. (2014). "Ammonia-Sensitive Photonic Structures Fabricated in Nafion Membranes by Laser Ablation". ACS Applied Materials & Interfaces 6 (11): 8903–8908. doi:10.1021/am5016588. ISSN 1944-8244. 
  6. ^ CP Tsangarides; AK Yetisen; FC Vasconcellos; Y Montelongo; MM Qasim; CR Lowe; TD Wilkinson; H Butt (2014). "Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors.". RSC Advances 4: 10454. doi:10.1039/C3RA47984F. 
  7. ^ a b Martínez-Hurtado, J. L.; Davidson, C. A. B.; Blyth, J.; Lowe, C. R. (2010). "Holographic Detection of Hydrocarbon Gases and Other Volatile Organic Compounds". Langmuir 26 (19): 15694–15699. doi:10.1021/la102693m. ISSN 0743-7463. 
  8. ^ Selective Holographic Glucose Sensor: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1426342&userType=inst
  9. ^ Blyth, Jeff; Millington, Roger B.; Mayes, Andrew G.; Frears, Emma R.; Lowe, Christopher R. (1996). "Holographic Sensor for Water in Solvents". Analytical Chemistry 68 (7): 1089–1094. doi:10.1021/ac9509115. ISSN 0003-2700. 
  10. ^ Sartain, Felicity K.; Yang, Xiaoping; Lowe, Christopher R. (2006). "Holographic Lactate Sensor". Analytical Chemistry 78 (16): 5664–5670. doi:10.1021/ac060416g. ISSN 0003-2700. 
  11. ^ Marshall, Alexander J.; Young, Duncan S.; Blyth, Jeff; Kabilan, Satyamoorthy; Lowe, Christopher R. (2004). "Metabolite-Sensitive Holographic Biosensors". Analytical Chemistry 76 (5): 1518–1523. doi:10.1021/ac030357w. ISSN 0003-2700. 
  12. ^ Millington, Roger B.; Mayes, Andrew G.; Blyth, Jeff.; Lowe, Christopher R. (1995). "A Holographic Sensor for Proteases". Analytical Chemistry 67 (23): 4229–4233. doi:10.1021/ac00119a004. ISSN 0003-2700. 
  13. ^ AK Yetisen; M Qasim; S Nosheen; TD Wilkinson; CR Lowe (2014). "Pulsed laser writing of holographic nanosensors.". Journal of Materials Chemistry C 2: 3569. doi:10.1039/C3TC32507E.