Jump to content

Homo floresiensis

From Wikipedia, the free encyclopedia

Homo floresiensis
Temporal range: 0.190–0.050 Ma[1]
Skull with associated mandible.
H. floresiensis skull, Cantonal Museum of Geology, Switzerland
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Suborder: Haplorhini
Infraorder: Simiiformes
Family: Hominidae
Subfamily: Homininae
Tribe: Hominini
Genus: Homo
H. floresiensis
Binomial name
Homo floresiensis
Brown et al., 2004
Flores in Indonesia, shown highlighted in red

Homo floresiensis ( /flɔːrˈɛzˌɛn.sɪs/ also known as "Flores Man") is an extinct species of small archaic human that inhabited the island of Flores, Indonesia, until the arrival of modern humans about 50,000 years ago.

The remains of an individual who would have stood about 1.1 m (3 ft 7 in) in height were discovered in 2003 at Liang Bua cave. As of 2015, partial skeletons of fifteen individuals have been recovered, including one complete skull, referred to as "LB1".[2][3]

This hominin was at first considered remarkable for its survival until relatively recent times, initially thought to be only 12,000 years ago.[4] However, more extensive stratigraphic and chronological work has pushed the dating of the most recent evidence of its existence back to 50,000 years ago.[1][5][6] The Homo floresiensis skeletal material is now dated from 60,000 to 100,000 years ago; stone tools recovered alongside the skeletal remains were from archaeological horizons ranging from 50,000 to 190,000 years ago.[1]



Liang Bua Cave, where the specimens were discovered

The first specimens were discovered on the Indonesian island of Flores on 2 September 2003 by a joint Australian-Indonesian team of archaeologists looking for evidence of the original human migration of modern humans from Asia to Australia.[2][4] They instead recovered a nearly complete, small-statured skeleton, LB1, in the Liang Bua cave, and subsequent excavations in 2003 and 2004 recovered seven additional skeletons, initially dated from 38,000 to 13,000 years ago.[3]

In 2004, a separate species Homo floresiensis was named and described by Peter Brown et al., with LB1 as the holotype. A tooth, LB2, was referred to the species.[2] LB1 is a fairly complete skeleton, including a nearly complete skull, which belonged to a 30-year-old woman, and has been nicknamed "Little Lady of Flores" or "Flo".[2][7] An arm bone provisionally assigned to H. floresiensis, specimen LB3, is about 74,000 years old. The specimens are not fossilized and have been described as having "the consistency of wet blotting paper". Once exposed, the bones had to be left to dry before they could be dug up.[8][9] The discoverers proposed that a variety of features, both primitive and derived, identify these individuals as belonging to a new species.[2][4] Based on previous date estimates, the discoverers also proposed that H. floresiensis lived contemporaneously with modern humans on Flores.[10] Before publication, the discoverers were considering placing LB1 into her own genus, Sundanthropus floresianus (lit.'Sunda human from Flores'), but reviewers of the article recommended that, despite her size, she should be placed in the genus Homo.[11]

Skeleton at the Natural History Museum, London

In 2009, additional finds were reported, increasing the minimum number of individuals represented by bones to fourteen.[12] In 2015, teeth were referred to a fifteenth individual, LB15.[13][14]

Stone implements of a size considered appropriate to these small humans are also widely present in the cave. The implements are at horizons initially dated to 95,000 to 13,000 years ago.[3] Modern humans reached the region by around 50,000 years ago, by which time H. floresiensis is thought to have gone extinct.[1] Comparisons of the stone artifacts with those made by modern humans in East Timor indicate many technological similarities.[15]

Scandal over specimen damage[edit]

The fossils are property of the Indonesian state. In early December 2004, Indonesian paleoanthropologist Teuku Jacob, formerly chief paleontologist of the Indonesian Gadjah Mada University, removed most of the remains from their repository, Jakarta's National Research Centre of Archaeology, with the permission of one of the institute's directors, Raden Panji Soejono, and kept them for three months.[16][17][18][19] Professor Jacob did not believe the specimens represented a different species, contending that the LB1 find was from a 25–30 year-old omnivorous subspecies of H. sapiens, probably a pygmy, and that the small skull was due to microcephaly, which produces a small brain and skull. Professor Richard Roberts of the University of Wollongong in Australia and other anthropologists expressed the fear that important scientific evidence would be sequestered by a small group of scientists who neither allowed access by other scientists nor published their own research.[17] Jacob returned the remains on 23 February 2005 with portions severely damaged[20] and missing two leg bones.[21]

Press reports thus described the condition of the returned remains: "[including] long, deep cuts marking the lower edge of the Hobbit's jaw on both sides, said to be caused by a knife used to cut away the rubber mould ... the chin of a second Hobbit jaw was snapped off and glued back together. Whoever was responsible misaligned the pieces and put them at an incorrect angle ... The pelvis was smashed, destroying details that reveal body shape, gait and evolutionary history.",[22] causing the discovery team leader Morwood to remark, "It's sickening; Jacob was greedy and acted totally irresponsibly."[20]

Jacob, however, denied any wrongdoing. He stated that the damages occurred during transport from Yogyakarta back to Jakarta[22][23] despite the claimed physical evidence that the jawbone had been broken while making a mould of the bones.[20][24]

In 2005, Indonesian officials forbade access to the cave. Some news media, such as the BBC, expressed the opinion that the restriction was to protect Jacob, who was considered "Indonesia's king of palaeoanthropology", from being proved wrong. Scientists were allowed to return to the cave in 2007, shortly after Jacob's death.[22]


Phylogeny and evolution[edit]

Because of the deep neighbouring Lombok Strait, Flores remained an isolated island during episodes of low sea level. Therefore, the ancestors of H. floresiensis could only have reached the island by oceanic dispersal, most likely by rafting.[25] The oldest stone tools on Flores are over 1 million years old.[26][27] Stone artifacts are absent from sites over 1.27 million years old, suggesting that the ancestors of H. floresiensis arrived after this time.[27] In 2016, fossil teeth and a partial jaw from hominins assumed to be ancestral to H. floresiensis were discovered[28] at Mata Menge, about 74 km (46 mi) from Liang Bua. They date to about 700,000 years ago[29] and are noted by Australian archaeologist Gerrit van den Bergh for being even smaller than the later fossils. Based on these, he suggested that H. floresiensis derived from a population of H. erectus and rapidly shrank.[30]

Two orthopedic studies published in 2007 reported that the wrist bones were more similar to those of chimpanzees and Australopithecus than to modern humans.[31] Another 2007 study of the bones and joints of the arm, shoulder, and lower limbs also concluded that H. floresiensis was more similar to early humans and other apes than modern humans.[32] In 2008, South African palaeoanthropologist Lee Rogers Berger and colleagues described the earliest human remains from the Palau Archipelago, and noted several parallels to H. floresiensis; they suggested supposedly diagnostic traits of H. floresiensis were instead a result of insular dwarfism of an H. erectus population.[33]

A 2009 cladistic analysis concluded H. floresiensis branched off very early from the modern human line, either shortly before or shortly after the evolution of H. habilis 1.96–1.66 million years ago.[34] In 2009, American anthropologist William Jungers and colleagues found that the foot of H. floresiensis has several primitive characteristics, and that they could be the descendants of a species much earlier than H. erectus.[35] A 2015 Bayesian analysis found greatest similarity with Australopithecus sediba, Homo habilis and the primitive H. erectus georgicus, raising the possibility that the ancestors of H. floresiensis left Africa before the appearance of H. erectus, and were possibly even the first hominins to do so.[36] However, H. floresiensis has several dental similarities to H. erectus, which supports H. erectus as the ancestor species,[37] a suggestion supported by a later 2022 study including some of the same authors.[38]

A phylogenetic analysis published in 2017 suggests that H. floresiensis was descended from the same (presumably australopithecine) ancestor as H. habilis, making it a sister taxon to H. habilis. H. floresiensis would thus represent a hitherto unknown and very early migration out of Africa.[39] A similar conclusion was suggested in a 2018 study dating stone artefacts found at Shangchen, central China, to 2.1 million years ago.[40]

DNA extraction attempt[edit]

In 2006, two teams attempted to extract DNA from a tooth discovered in 2003, but both teams were unsuccessful. It has been suggested that this happened because the dentine was targeted; new research suggests that the cementum has higher concentrations of DNA. Moreover, the heat generated by the high speed of the drill bit may have denatured the DNA.[41]

Further DNA studies[edit]

Nearby the cave, the people of Rampasasa village have been described as pygmies. In 2013, with the consent of village elders, Herawati Sudoyo and research assistant Gludhug A. Purnomo took saliva samples from 32 Rampasasa villagers. Enlisted by Dr. Sudoyo, Dr. Serena Tucci and her colleagues compared the DNA of the Rampasasa villagers to that of other living people around the world. They found that the Rampasasa villagers are close to populations from islands in South-East Asia and from South-East Asian continent. The nearest populations DNA-wise are the Lebbo on Borneo and the Mamanwa from the Philippines. Their DNA show an ancestry which is a mix of East Asian population and New Guinean population, due to the Austronesian expansion; the New Guinean origin accounts for about 23% of Rampasasa villagers' complete DNA. That DNA also includes 0.8% of Denisovan DNA, which is more than that in populations from South-East Asian islands but less than that in Melanesians; it is proportional to their New Guinean ascendency, with 53,5 megabase (Mb) per individual with Floresian pygmies, of which 47,5 Mb come from Neandertal and 4,2 Mb come from Denisova. The remaining quantity is classed as ambiguous: the researchers do not know whether that portion comes from Neandertal or Denisova. All in all, the authors did not find in the Floresian pygmies' genome any archaic signature different from Neandertal or Denisova. They conclude that The ancestors of the Floresian population did not mix genetically with Homo erectus nor Homo floresiensis - that is, the Rampasasa villagers have Neandertal and Denisovan ancestry but have neither Homo erectus nor Homo floresiensis ancestry.[42]

The authors then looked at genes influenced by natural selection in Floresian "pygmies". They identified one DNA area corresponding to HLA (human leukocyte antigen), which is linked to the organism's immunity response; and another DNA area corresponding to FADS (fatty acid desaturase) linked with food. For the Rampasasa villagers, that gene's haplotype is fixed to the ancestral allele - a disposition found with some other populations from South-East Asia but also with Greenlandic Inuit, and which is potentially a response to climate and to predominantly marine food intake rich in omega-3 fatty acid. Thus these modern individuals bear the signatures of recent positive selection encompassing the FADS (fatty acid desaturase) gene cluster, likely related to diet, and polygenic selection acting on standing variation that contributed to their short-stature phenotype. Thus, multiple independent instances of hominin insular dwarfism occurred on Flores.[42]

Congenital disorder claims[edit]

The small brain size of H. floresiensis at 417 cc prompted hypotheses that the specimens were simply H. sapiens with a birth defect, rather than the result of neurological reorganisation.[43] These claims have subsequently been rejected.[44]


LB1 (left) vs. microcephalic human (right)

Prior to Jacob's removal of the fossils, American neuroanthropologist Dean Falk and her colleagues performed a CT scan of the LB1 skull and a virtual endocast, and concluded that the brainpan was neither that of a pygmy nor an individual with a malformed skull and brain.[45] In response, American neurologist Jochen Weber and colleagues compared the computer model skull with microcephalic human skulls, and found that the skull size of LB1 falls in the middle of the size range of the human samples, and is not inconsistent with microcephaly.[46][47] A 2006 study stated that LB1 probably descended from a pygmy population of modern humans, but herself shows signs of microcephaly, and other specimens from the cave show small stature but not microcephaly.[48]

In 2005, the original discoverers of H. floresiensis, after unearthing more specimens, countered that the skeptics had mistakenly attributed the height of H. floresiensis to microcephaly.[3] Falk stated that Martin's assertions were unsubstantiated. In 2006, Australian palaeoanthropologist Debbie Argue and colleagues also concluded that the finds are indeed a new species.[49] In 2007, Falk found that H. floresiensis brains were similar in shape to modern humans, and the frontal and temporal lobes were well-developed, which would not have been the case were they microcephalic.<ref">Falk, D.; Hildebolt, C.; Smith, K.; Morwood, M.J.; Sutikna, T. (2 February 2007). "Brain shape in human microcephalics and Homo floresiensis". Proceedings of the National Academy of Sciences. 104 (7): 2513–8. Bibcode:2007PNAS..104.2513F. doi:10.1073/pnas.0609185104. PMC 1892980. PMID 17277082.</ref>

In 2008, Greek palaeontologist George Lyras and colleagues said that LB1 falls outside the range of variation for human microcephalic skulls.[50] However, a 2013 comparison of the LB1 endocast to a set of 100 normocephalic and 17 microcephalic endocasts showed that there is a wide variation in microcephalic brain shape ratios and that in these ratios the group as such is not clearly distinct from normocephalics. The LB1 brain shape nevertheless aligns slightly better with the microcephalic sample, with the shape at the extreme edge of the normocephalic group.[51] A 2016 pathological analysis of LB1's skull revealed no pathologies nor evidence of microcephaly, and concluded that LB1 is a separate species.[52]

Laron syndrome[edit]

A 2007 study postulated that the skeletons were those of humans who suffered from Laron syndrome, which was first reported in 1966, and is most common in inbreeding populations, which may have been the scenario on the small island. It causes a short stature and small skull, and many conditions seen in Laron syndrome patients are also exhibited in H. floresiensis. The estimated height of LB1 is at the lower end of the average for afflicted human women, but the endocranial volume is much smaller than anything exhibited in Laron syndrome patients. DNA analysis would be required to support this theory.[53]

Congenital iodine deficiency syndrome[edit]

Colin Groves and Debbie Argue examining the type specimen

In 2008 Australian researcher Peter Obendorf — who studies congenital iodine deficiency syndrome — and colleagues suggested that LB1 and LB6 suffered from myxoedematous (ME) congenital iodine deficiency syndrome resulting from congenital hypothyroidism (underactive thyroid), and that they were part of an affected population of H. sapiens on the island. Congenital iodine deficiency syndrome, caused by iodine deficiency, is expressed by small bodies and reduced brain size (but ME causes less motor and mental disablement than other forms of congenital iodine deficiency syndrome), and is a form of dwarfism still found in the local Indonesian population. They said that various features of H. floresiensis are diagnostic characteristics, such as enlarged pituitary fossa, unusually straight and untwisted humeral heads, relatively thick limbs, double rooted premolar, and primitive wrist morphology.[54]

However, Falk's scans of LB1's pituitary fossa show that it is not larger than usual.[55] Also, in 2009, anthropologists Colin Groves and Catharine FitzGerald compared the Flores bones with those of ten people who had had cretinism, and found no overlap.[56][57] Obendorf and colleagues rejected Groves and FitzGerald's argument the following year.[58] A 2012 study similar to Groves and FitzGeralds' also found no evidence of congenital iodine deficiency syndrome.[59]

Down syndrome[edit]

In 2014, physical anthropologist Maciej Henneberg and colleagues claimed that LB1 suffered from Down syndrome, and that the remains of other individuals at the Flores site were merely normal modern humans.[60] However, there are a number of characteristics shared by both LB1 and LB6 as well as other known early humans and absent in H. sapiens, such as the lack of a chin.[61] In 2016, a comparative study concluded that LB1 did not exhibit a sufficient number of Down syndrome characteristics to support a diagnosis.[62]


The most important and obvious identifying features of Homo floresiensis are its small body and small cranial capacity. Brown and Morwood also identified a number of additional, less obvious features that might distinguish LB1 from modern H. sapiens, including the form of the teeth, the absence of a chin, and a lesser torsion in the lower end of the humerus (upper arm bone). Each of these putative distinguishing features has been heavily scrutinized by the scientific community, with different research groups reaching differing conclusions as to whether these features support the original designation of a new species,[49] or whether they identify LB1 as a severely pathological H. sapiens.[48]

A 2015 study of the dental morphology of forty teeth of H. floresiensis compared to 450 teeth of living and extinct human species, states that they had "primitive canine-premolar and advanced molar morphologies," which is unique among hominins.[37]

The discovery of additional partial skeletons[3] has verified the existence of some features found in LB1, such as the lack of a chin, but Jacob and other research teams argue that these features do not distinguish LB1 from local modern humans.[48] Lyras et al. have asserted, based on 3D-morphometrics, that the skull of LB1 differs significantly from all H. sapiens skulls, including those of small-bodied individuals and microcephalics, and is more similar to the skull of Homo erectus.[50] Ian Tattersall argues that the species is wrongly classified as Homo floresiensis as it is far too archaic to assign to the genus Homo.[63]


LB1's height is estimated to have been 1.06 m (3 ft 6 in). The height of a second skeleton, LB8, has been estimated at 1.09 m (3 ft 7 in) based on tibial length.[3] These estimates are outside the range of normal modern human height and considerably shorter than the average adult height of even the smallest modern humans, such as the Mbenga and Mbuti at 1.5 m (4 ft 11 in),[64] Twa, Semang at 1.37 m (4 ft 6 in) for adult women of the Malay Peninsula,[65] or the Andamanese at also 1.37 m (4 ft 6 in) for adult women.[66] LB1's body mass is estimated to have been 25 kg (55 lb). LB1 and LB8 are also somewhat smaller than the australopithecines, such as Lucy, from three million years ago, not previously thought to have expanded beyond Africa. Thus, LB1 and LB8 may be the shortest and smallest members of the extended human group discovered thus far.[67]

Their short stature was likely due to insular dwarfism, where size decreases as a response to fewer resources in an island ecosystem.[2][68] In 2006, Indonesian palaeoanthropologist Teuku Jacob and colleagues said that LB1 has a similar stature to the Rampasasa pygmies who inhabit the island, and that size can vary substantially in pygmy populations.[48] A 2018 study refuted the possibility of Rampasasa pygmies descending from H. floresiensis, concluding that "multiple independent instances of hominin insular dwarfism occurred on Flores". However, as no genetic material from H. floresiensis was examined, a truly definitive conclusion cannot be made.[69]

Aside from smaller body size, the specimens seem to otherwise resemble H. erectus, a species known to have been living in Southeast Asia at times coincident with earlier finds purported to be of H. floresiensis.[3]


Skull at the Naturmuseum Senckenberg, Germany

In addition to a small body size, H. floresiensis had a remarkably small brain size. LB1's brain is estimated to have had a volume of 380 cm3 (23 cu in), placing it at the range of chimpanzees or the extinct australopithecines.[2][45] LB1's brain size is less than half that of its presumed immediate ancestor, H. erectus (980 cm3 (60 cu in)).[45] The brain-to-body mass ratio of LB1 lies between that of H. erectus and the great apes.[70] Such a reduction is likely due to insular dwarfism, and a 2009 study found that the reduction in brain size of extinct pygmy hippopotamuses in Madagascar compared with their living relatives is proportionally greater than the reduction in body size, and similar to the reduction in brain size of H. floresiensis compared with H. erectus.[71]

Smaller size does not appear to have affected mental faculties, as Brodmann area 10 on the prefrontal cortex, which is associated with cognition, is about the same size as that of modern humans.[45] H. floresiensis is also associated with evidence for advanced behaviours, such as the use of fire, butchering, and stone tool manufacturing.[3][4]


The angle of humeral torsion is much less than in modern humans.[2][3][4] The humeral head of modern humans is twisted between 145 and 165 degrees to the plane of the elbow joint, whereas it is 120 degrees in H. floresiensis. This may have provided an advantage when arm-swinging, and, in tandem with the unusual morphology of the shoulder girdle and short clavicle, would have displaced the shoulders slightly forward into an almost shrugging position. The shrugging position would have compensated for the lower range of motion in the arm, allowing for similar maneuverability in the elbows as modern humans.[32] The wrist bones are similar to those of apes and Australopithecus. They are significantly different from those of modern humans, lacking features which evolved at least 800,000 years ago. [31]

The leg bones are more robust than those of modern humans.[2][3][4] The feet were unusually flat and long in relation with the rest of the body.[72] As a result, when walking, they would have had to bend the knees further back than modern humans do. This caused a high-stepping gait and low walking speed.[73] The toes had an unusual shape and the big toe was very short.[74]


A facial reconstruction of Homo floresiensis

The cave yielded over ten thousand stone artefacts, mainly lithic flakes, surprising considering H. floresiensis's small brain. This has led some researchers to theorize that H. floresiensis inherited their tool-making skills from H. erectus.[75] Points, perforators, blades, and microblades were associated with remains of the extinct elephant-relative Stegodon. It has therefore been proposed that H. floresiensis hunted juvenile Stegodon. Similar artefacts are found at the Soa Basin 50 km (31 mi) south, associated with Stegodon and Komodo dragon remains, and are attributed to a likely ancestral population of H. erectus.[2][3][4] Other authors have doubted the extent of hunting of Stegodon by H. floresiensis, noting the rarity of cut marks on remains of Stegodon found at Liang Bua, suggesting that they would have faced intense competition for carcasses with other predators, like the Komodo dragon, the giant stork Leptoptilos robustus, and vultures, and that it was possible that their main prey was instead the giant rats endemic to the island, which are found abundantly at Liang Bua. While it was initially suggested that H. floresiensis was capable of using fire, the supporting evidence for this claim was later found to be unreliable.[44]


The youngest H. floresiensis bone remains in the cave date to 60,000 years ago, and the youngest stone tools to 50,000 years ago. The previous estimate of 12,000 BP was due to an undetected unconformity in the cave stratigraphy. The timing of their disappearance from the cave stratigraphy is close to the time that modern humans reached the area, which may suggest the effects of modern humans directly on H. floresiensis or more broadly on the ecosystems of Flores caused or contributed to their extinction.[76]


During the late Early Pleistocene-Late Pleistocene before the arrival of Homo sapiens, Flores exhibited a depauperate ecosystem with relatively few terrestrial vetebrate species, including the extinct dwarf proboscidean (elephant relative) Stegodon florensis;[27] and a variety of rats (Murinae) including small-sized forms like Rattus hainaldi, the Polynesian rat, Paulamys, and Komodomys, the medium-sized Hooijeromys, and giant Papagomys and extinct Spelaeomys, the latter two genera being about the size of rabbits, with body masses of 600–2,500 grams (1.3–5.5 lb).[77] Also present were the Komodo dragon and another smaller monitor lizard (Varanus hooijeri),[27] with birds including a giant stork (Leptoptilos robustus) and a vulture (Trigonoceps).[78]

"Hobbit" nickname[edit]

Homo floresiensis was swiftly nicknamed "the hobbit" by the discoverers, after the fictional race popularized in J. R. R. Tolkien's book The Hobbit, and some of the discoverers suggested naming the species H. hobbitus.[11]

In October 2012, a New Zealand scientist due to give a public lecture on Homo floresiensis was told by the Tolkien Estate that he was not allowed to use the word "hobbit" in promoting the lecture.[79]

In 2012, the American film studio The Asylum, which produces low-budget "mockbuster" films,[80] planned to release a movie entitled Age of the Hobbits depicting a "peace-loving" community of H. floresiensis "enslaved by the Java Men, a race of flesh-eating dragon-riders."[81] The film was intended to piggyback on the success of Peter Jackson's film The Hobbit: An Unexpected Journey.[82] The film was blocked from release due to a legal dispute about using the word "hobbit."[82] The Asylum argued that the film did not violate the Tolkien copyright because the film was about H. floresiensis, "uniformly referred to as 'Hobbits' in the scientific community."[81] The film was later retitled Clash of the Empires.


  1. ^ a b c d Sutikna, Thomas; Tocheri, Matthew W.; Morwood, Michael J.; et al. (30 March 2016). "Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia". Nature. 532 (7599): 366–369. Bibcode:2016Natur.532..366S. doi:10.1038/nature17179. PMID 27027286. S2CID 4469009.
  2. ^ a b c d e f g h i j Brown, P.; et al. (27 October 2004). "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" (PDF). Nature. 431 (7012): 1055–1061. Bibcode:2004Natur.431.1055B. doi:10.1038/nature02999. PMID 15514638. S2CID 26441.
  3. ^ a b c d e f g h i j k Morwood, M. J.; et al. (13 October 2005). "Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia". Nature. 437 (7061): 1012–1017. Bibcode:2005Natur.437.1012M. doi:10.1038/nature04022. PMID 16229067. S2CID 4302539.
  4. ^ a b c d e f g Morwood, M. J.; et al. (27 October 2004). "Archaeology and age of a new hominin from Flores in eastern Indonesia". Nature. 431 (7012): 1087–1091. Bibcode:2004Natur.431.1087M. doi:10.1038/nature02956. PMID 15510146. S2CID 4358548.
  5. ^ Ritter, Malcolm (30 March 2016). "Study: Indonesia "hobbit" fossils older than first thought". Associated Press. Retrieved 1 April 2016.
  6. ^ Amos, Jonathan (30 March 2016). "Age of 'Hobbit' species revised". BBC News. Retrieved 1 April 2016.
  7. ^ Jungers, W.; Baab, K. (December 2009). "The geometry of hobbits: Homo floresiensis and human evolution". Significance. 6 (4): 159–164. doi:10.1111/j.1740-9713.2009.00389.x.
  8. ^ Dalton, Rex (28 October 2004). "Little lady of Flores forces rethink of human evolution". Nature. 431 (7012): 1029. Bibcode:2004Natur.431.1029D. doi:10.1038/4311029a. PMID 15510116.
  9. ^ Morwood & Oosterzee 2007.
  10. ^ McKie, Robin (21 February 2010). "How a hobbit is rewriting the history of the human race". The Guardian. Retrieved 23 February 2010.
  11. ^ a b Aiello, Leslie C. (2010). "Five years of Homo floresiensis". American Journal of Physical Anthropology. 142 (2): 167–179. doi:10.1002/ajpa.21255. PMID 20229502.
  12. ^ Morwood, M. J.; Sutikna, T.; Saptomo, E. W.; Jatmiko; Hobbs, D. R.; Westaway, K. E. (November 2009). "Preface: research at Liang Bua, Flores, Indonesia". Journal of Human Evolution. 57 (5): 437–449. Bibcode:2009JHumE..57..437M. doi:10.1016/j.jhevol.2009.07.003. PMID 19733385.
  13. ^ Kaifu, Yousuke; Kono, Reiko T.; Sutikna, Thomas; Saptomo, E. Wahyu; Jatmiko; Rokus Due Awe; Baba, Hisao (2015). "Descriptions of the dental remains of Homo floresiensis". Anthropological Science. 123 (2): 129–145. doi:10.1537/ase.150501. Retrieved 20 June 2024.
  14. ^ Eckhardt, Robert B.; Chavanaves, Sakdapong; Henneberg, Maciej (April 2015). "Liang Bua Cave (Flores) humans (aka "Homo floresiensis") exhibit individual variation and temporal change, not uniformity and stasis" (PDF). American Journal of Physical Anthropology (84th Annual Meeting of the American Association of Physical Anthropologists, March 25-28, 2015) (156): 126–127. Retrieved 20 June 2024.
  15. ^ Marwick, Ben; Clarkson, Chris; O'Connor, Sue; Collins, Sophie (December 2016). "Early modern human lithic technology from Jerimalai, East Timor". Journal of Human Evolution. 101: 45–64. Bibcode:2016JHumE.101...45M. doi:10.1016/j.jhevol.2016.09.004. PMID 27886810.
  16. ^ Morwood & Oosterzee 2007, ch. 9.
  17. ^ a b Connor, Steve (30 November 2004). "'Hobbit woman' remains spark row among academics". New Zealand Herald. Archived from the original on 12 December 2004.
  18. ^ "Fight over access to 'hobbit' bones – being-human". New Scientist. 11 December 2004.
  19. ^ "Professor fuels row over Hobbit man fossils". The Times. London, UK. 3 December 2004.
  20. ^ a b c "Hobbits triumph tempered by tragedy". Sydney Morning Herald. 5 March 2005.
  21. ^ Powledge, Tabitha M. (28 February 2005). "Flores hominid bones returned". The Scientist. Retrieved 28 February 2009.
  22. ^ a b c "Hobbit cave digs set to restart". BBC News. 25 January 2007.
  23. ^ Culotta, E. (2005). "Paleoanthropology—new 'hobbits' bolster species, but origins still a mystery" (PDF). Science. Vol. 310, no. 5746. pp. 208–209. Retrieved 20 June 2024.
  24. ^ Morwood & Oosterzee 2007, p. 230–231, ch. 9.
  25. ^ Dennell, Robin W.; Louys, Julien; O'Regan, Hannah J.; Wilkinson, David M. (July 2014). "The origins and persistence of Homo floresiensis on Flores: biogeographical and ecological perspectives". Quaternary Science Reviews. 96: 98–107. Bibcode:2014QSRv...96...98D. doi:10.1016/j.quascirev.2013.06.031. hdl:1885/30501. S2CID 56035748.
  26. ^ Brumm, Adam; Jensen, Gitte M.; van den Bergh, Gert D.; Morwood, Michael J.; Kurniawan, Iwan; Aziz, Fachroel; Storey, Michael (2010). "Hominins on Flores, Indonesia, by one million years ago". Nature. 464 (7289): 748–752. Bibcode:2010Natur.464..748B. doi:10.1038/nature08844. ISSN 0028-0836. PMID 20237472. S2CID 205219871.
  27. ^ a b c d van den Bergh, Gerrit D.; Alloway, Brent V.; Storey, Michael; Setiawan, Ruly; Yurnaldi, Dida; Kurniawan, Iwan; Moore, Mark W.; Jatmiko; Brumm, Adam; Flude, Stephanie; Sutikna, Thomas; Setiyabudi, Erick; Prasetyo, Unggul W.; Puspaningrum, Mika R.; Yoga, Ifan (October 2022). "An integrative geochronological framework for the Pleistocene So'a basin (Flores, Indonesia), and its implications for faunal turnover and hominin arrival". Quaternary Science Reviews. 294: 107721. Bibcode:2022QSRv..29407721V. doi:10.1016/j.quascirev.2022.107721. hdl:10072/418777. S2CID 252290750.
  28. ^ Callaway, E. (8 June 2016). "'Hobbit' relatives found after ten-year hunt". Nature. 534 (7606): 164–165. Bibcode:2016Natur.534Q.164C. doi:10.1038/534164a. PMID 27279191.
  29. ^ Brumm, A.; van den Bergh, G. D.; Storey, M.; Kurniawan, I.; Alloway, B. V.; Setiawan, R.; Setiyabudi, E.; Grün, R.; Moore, M. W.; Yurnaldi, D.; Puspaningrum, M. R.; Wibowo, U. P.; Insani, H.; Sutisna, I.; Westgate, J. A.; Pearce, N. J. G.; Duval, M.; Meijer, H. J. M.; Aziz, F.; Sutikna, T.; van der Kaars, S.; Flude, S.; Morwood, M. J. (8 June 2016). "Age and context of the oldest known hominin fossils from Flores" (PDF). Nature. 534 (7606): 249–253. Bibcode:2016Natur.534..249B. doi:10.1038/nature17663. PMID 27279222. S2CID 28608179.
  30. ^ van den Bergh, G. D.; Kaifu, Y.; Kurniawan, I.; Kono, R. T.; Brumm, A.; Setiyabudi, E.; Aziz, F.; Morwood, M. J. (8 June 2016). "Homo floresiensis-like fossils from the early Middle Pleistocene of Flores". Nature. 534 (7606): 245–248. Bibcode:2016Natur.534..245V. doi:10.1038/nature17999. PMID 27279221. S2CID 205249218.
  31. ^ a b Tocheri, M.W.; Orr, C.M.; Larson, S.G.; Sutikna, T.; Jatmiko; Saptomo, E.W.; Due, R.A.; Djubiantono, T.; Morwood, M.J.; Jungers, W.L. (21 September 2007). "The Primitive Wrist of Homo floresiensis and Its Implications for Hominin Evolution" (PDF). Science. 317 (5845): 1743–5. Bibcode:2007Sci...317.1743T. doi:10.1126/science.1147143. PMID 17885135. S2CID 42081240.
  32. ^ a b Larson et al. 2007.
  33. ^ Berger, L. R.; Churchill, S. E.; et al. (2008). "Small-Bodied Humans from Palau, Micronesia". PLOS ONE. 3 (3): e1780. Bibcode:2008PLoSO...3.1780B. doi:10.1371/journal.pone.0001780. PMC 2268239. PMID 18347737.
  34. ^ Argue, Debbie; Morwood, M.; Sutikna, T.; Jatmiko; Saptomo, W. (July 2009). "Homo floresiensis: A cladistic analysis". Journal of Human Evolution. Online Only as of Aug 4, 2009 (5): 623–639. Bibcode:2009JHumE..57..623A. doi:10.1016/j.jhevol.2009.05.002. PMID 19628252.
  35. ^ Jungers, W. L.; Harcourt-Smith, W. E. H.; Wunderlich, R. E.; Tocheri, M. W.; Larson, S. G.; Sutikna, T.; Due, Rhokus Awe; Morwood, M. J. (2009). "The foot of Homo floresiensis". Nature. 459 (7243): 81–84. Bibcode:2009Natur.459...81J. doi:10.1038/nature07989. PMID 19424155. S2CID 4392759.
  36. ^ Dembo, M.; Matzke, N. J.; Mooers, A. Ø.; Collard, M. (2015). "Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships". Proceedings of the Royal Society B: Biological Sciences. 282 (1812): 20150943. doi:10.1098/rspb.2015.0943. PMC 4528516. PMID 26202999.
  37. ^ a b Kaifu, Yousuke; Kono, Reiko T.; Sutikna, Thomas; Saptomo, Emanuel Wahyu; Jatmiko; Due Awe, Rokus (18 November 2015). Bae, Christopher (ed.). "Unique Dental Morphology of Homo floresiensis and Its Evolutionary Implications". PLoS One. 10 (11): e0141614. Bibcode:2015PLoSO..1041614K. doi:10.1371/journal.pone.0141614. PMC 4651360. PMID 26624612.
  38. ^ Zanolli, Clément; Kaifu, Yousuke; Pan, Lei; Xing, Song; Mijares, Armand S.; Kullmer, Ottmar; Schrenk, Friedemann; Corny, Julien; Dizon, Eusebio; Robles, Emil; Détroit, Florent (February 2022). "Further analyses of the structural organization of Homo luzonensis teeth: Evolutionary implications". Journal of Human Evolution. 163: 103124. Bibcode:2022JHumE.16303124Z. doi:10.1016/j.jhevol.2021.103124. PMID 34998272. S2CID 245784713.
  39. ^ Argue, Debbie; Groves, Colin P. (21 April 2017). "The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters". Journal of Human Evolution. 107: 107–133. Bibcode:2017JHumE.107..107A. doi:10.1016/j.jhevol.2017.02.006. PMID 28438318.
  40. ^ Zhu Zhaoyu (朱照宇); Dennell, Robin; Huang Weiwen (黄慰文); Wu Yi (吴翼); Qiu Shifan (邱世藩); Yang Shixia (杨石霞); Rao Zhiguo (饶志国); Hou Yamei (侯亚梅); Xie Jiubing (谢久兵); Han Jiangwei (韩江伟); Ouyang Tingping (欧阳婷萍) (2018). "Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago". Nature. 559 (7715): 608–612. Bibcode:2018Natur.559..608Z. doi:10.1038/s41586-018-0299-4. ISSN 0028-0836. PMID 29995848. S2CID 49670311.
  41. ^ Jones, Cheryl (5 January 2011). "Researchers to drill for hobbit history : Nature News". Nature. doi:10.1038/news.2011.702. Retrieved 1 October 2011.
  42. ^ a b Tucci, Serena; Vohr, Samuel H.; McCoy, Rajiv C.; Vernot, Benjamin; Robinson, Matthew R.; Barbieri, Chiara; Nelson, Brad J.; Fu, Wenqing; Purnomo, Gludhug A.; Sudoyo, Herawati; Eichler, Evan E.; Barbujani, Guido; Visscher, Peter M.; Akey, Joshua M.; Green, Richard E. (August 2018). "Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia". Science. 361 (6401): 511–516. Bibcode:2018Sci...361..511T. doi:10.1126/science.aar8486. PMC 6709593. PMID 30072539.
  43. ^ Falk, D.; Hildebolt, Charles; Smith, Kirk; Morwood, M.J.; Sutikna, Thomas; Jatmiko; Saptomo, E. Wayhu; Prior, Fred (2009). "LB1's virtual endocast, microcephaly and hominin brain evolution". Journal of Human Evolution. 57 (5): 597–607. Bibcode:2009JHumE..57..597F. doi:10.1016/j.jhevol.2008.10.008. PMID 19254807.
  44. ^ a b Tocheri, Matthew W.; Sutikna, Thomas; Jatmiko; Saptomo, E. Wahyu (14 February 2022). "Homo floresiensis". The Oxford Handbook of Early Southeast Asia. Oxford University Press. pp. 38–69. doi:10.1093/oxfordhb/9780199355358.013.2. ISBN 978-0-19-935535-8. Retrieved 13 March 2023.
  45. ^ a b c d Falk, D.; et al. (8 April 2005). "The Brain of LB1, Homo floresiensis" (PDF). Science. 308 (5719): 242–245. Bibcode:2005Sci...308..242F. doi:10.1126/science.1109727. PMID 15749690. S2CID 43166136.
  46. ^ Weber, J.; Czarnetzki, A.; Pusch, C.M. (14 October 2005). "Comment on "The Brain of LB1, Homo floresiensis"". Science. 310 (5746): 236. doi:10.1126/science.1114789. PMID 16224005.
  47. ^ von Bredow, Rafaela (1 September 2006). "Indonesia's "Hobbit": A Huge Fight over a Little Man". Der Spiegel.
  48. ^ a b c d Jacob, T.; Indriati, E.; Soejono, R. P.; Hsu, K.; Frayer, D. W.; Eckhardt, R. B.; Kuperavage, A. J.; Thorne, A.; Henneberg, M. (5 September 2006). "Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: Population affinities and pathological abnormalities". Proceedings of the National Academy of Sciences of the United States of America. 103 (36): 13421–13426. Bibcode:2006PNAS..10313421J. doi:10.1073/pnas.0605563103. PMC 1552106. PMID 16938848.
  49. ^ a b Argue, D.; Donlon, D.; Groves, C.; Wright, R. (October 2006). "Homo floresiensis: Microcephalic, pygmoid, Australopithecus, or Homo?". Journal of Human Evolution. 51 (4): 360–374. Bibcode:2006JHumE..51..360A. doi:10.1016/j.jhevol.2006.04.013. PMID 16919706.
  50. ^ a b Lyras, G.A.; Dermitzakis, D.M.; Van Der Geer, A.A.E.; Van der Geer, S.B.; De Vos, J. (1 August 2008). "The origin of Homo floresiensis and its relation to evolutionary processes under isolation". Anthropological Science. 117: 33–43. doi:10.1537/ase.080411. Retrieved 20 June 2024.
  51. ^ Vannucci, Robert C.; Barron, Todd F.; Holloway, Ralph L. (2013). "Frontal Brain Expansion During Development Using MRI and Endocasts: Relation to Microcephaly and Homo floresiensis". The Anatomical Record. 296 (4): 630–637. doi:10.1002/ar.22663. ISSN 1932-8486. PMID 23408553.
  52. ^ Balzeau, Antoine; Charlier, Philippe (2016). "What do cranial bones of LB1 tell us about Homo floresiensis?". Journal of Human Evolution. 93: 12–24. Bibcode:2016JHumE..93...12B. doi:10.1016/j.jhevol.2015.12.008. ISSN 0047-2484. PMID 27086053.
  53. ^ Hershkovitz, Israel; Kornreich, Liora; Laron, Zvi (2007). "Comparative skeletal features between Homo floresiensis and patients with primary growth hormone insensitivity (Laron syndrome)". American Journal of Physical Anthropology. 134 (2): 198–208. doi:10.1002/ajpa.20655. ISSN 0002-9483. PMID 17596857.
  54. ^ Obendorf, P.J.; Oxnard, C.E.; Kefford, C.E. (7 June 2008). "Are the small human-like fossils found on Flores human endemic cretins?". Proceedings of the Royal Society B. 275 (1640): 1287–1296. doi:10.1098/rspb.2007.1488. PMC 2602669. PMID 18319214.
  55. ^ Baab, Karen L. (2012). "Homo floresiensis: Making Sense of the Small-Bodied Hominin Fossils from Flores". Nature Education Knowledge. Learn Science at Scitable. Vol. 3, no. 9. p. 4. Retrieved 20 June 2024.
  56. ^ Groves, Colin Peter; Fitzgerald, Catharine (2010). "Healthy hobbits or victims of Sauron". HOMO: Journal of Comparative Human Biology. 61 (3): 211. doi:10.1016/j.jchb.2010.01.019.
  57. ^ "Flores hobbits didn't suffer from cretinism". New Scientist. 206 (2766): 17. 2010. doi:10.1016/S0262-4079(10)61537-0. ISSN 0262-4079.
  58. ^ Oxnard, C.; Obendorf, P.J.; Kefford, B.B. (2010). "Post-cranial skeletons of hypothyroid cretins show a similar anatomical mosaic as Homo floresiensis". PLOS ONE. 5 (9): e13018. Bibcode:2010PLoSO...513018O. doi:10.1371/journal.pone.0013018. PMC 2946357. PMID 20885948.
  59. ^ Brown, Peter (2012). "LB1 and LB6 Homo floresiensis are not modern human (Homo sapiens) cretins". Journal of Human Evolution. 62 (2): 201–224. Bibcode:2012JHumE..62..201B. doi:10.1016/j.jhevol.2011.10.011. ISSN 0047-2484. PMID 22277102.
  60. ^ Henneberg, Maciej; Eckhardt, Robert B.; Chavanaves, Sakdapong; Hsü, Kenneth J. (5 August 2014). "Evolved developmental homeostasis disturbed in LB1 from Flores, Indonesia, denotes Down syndrome and not diagnostic traits of the invalid species Homo floresiensis". Proceedings of the National Academy of Sciences. 111 (31): 11967–11972. Bibcode:2014PNAS..11111967H. doi:10.1073/pnas.1407382111. PMC 4143021. PMID 25092311.
  61. ^ Westaway, Michel Carrington; Durband, Arthur C. C; Groves, Colin P.; Collard, Mark (17 February 2015). "Mandibular evidence supports Homo floresiensis as a distinct species". Proceedings of the National Academy of Sciences. 112 (7): E604–E605. Bibcode:2015PNAS..112E.604W. doi:10.1073/pnas.1418997112. PMC 4343145. PMID 25659745.
  62. ^ Baab, Karen (8 June 2016). "A Critical Evaluation of the Down Syndrome Diagnosis for LB1, Type Specimen of Homo floresiensis". PLOS ONE. 11 (6): e0155731. Bibcode:2016PLoSO..1155731B. doi:10.1371/journal.pone.0155731. PMC 4898715. PMID 27275928.
  63. ^ Tattersall 2015, p. 194.
  64. ^ "Pygmy". Encyclopædia Britannica. Archived from the original on 8 January 2008.
  65. ^ Fix, Alan G. (June 1995). "Malayan Paleosociology: Implications for Patterns of Genetic Variation among the Orang Asli". American Anthropologist. New Series. 97 (2): 313–323. doi:10.1525/aa.1995.97.2.02a00090. JSTOR 681964.
  66. ^ Weber, George. "5. A Physical Examination". The Andamanese. andaman.org. Archived from the original on 10 July 2012. Retrieved 1 October 2011.
  67. ^ "Hobbit-Like Human Ancestor Found in Asia". nationalgeographic.com. National Geographic News. 27 October 2004. Archived from the original on 5 September 2019. Retrieved 22 May 2020.
  68. ^ Van Den Bergh, G. D.; Rokhus Due Awe; Morwood, M. J.; Sutikna, T.; Jatmiko; Wahyu Saptomo, E. (May 2008). "The youngest Stegodon remains in Southeast Asia from the Late Pleistocene archaeological site Liang Bua, Flores, Indonesia". Quaternary International. 182 (1): 16–48. Bibcode:2008QuInt.182...16V. doi:10.1016/j.quaint.2007.02.001.
  69. ^ Tucci, S.; et al. (3 August 2018). "Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia". Science. 361 (6401): 511–516. Bibcode:2018Sci...361..511T. doi:10.1126/science.aar8486. PMC 6709593. PMID 30072539.
  70. '^ Falk, D.; et al. (19 May 2006). "Response to Comment on 'The Brain of LB1, Homo floresiensis". Science. 312 (5776): 999c. Bibcode:2006Sci...312.....F. doi:10.1126/science.1124972.
  71. ^ Weston, E. M.; Lister, A. M. (7 May 2009). "Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis". Nature. 459 (7243): 85–88. Bibcode:2009Natur.459...85W. doi:10.1038/nature07922. ISSN 0028-0836. PMC 2679980. PMID 19424156.
  72. ^ Jungers, William L.; Larson, S.G.; Harcourt-Smith, W.; Morwood, M.J.; Sutikna, T.; Due Awe, Rokhus; Djubiantono, T. (4 December 2008). "Descriptions of the lower limb skeleton of Homo floresiensis". Journal of Human Evolution. 57 (5): 538–554. doi:10.1016/j.jhevol.2008.08.014. PMID 19062072.
  73. ^ Blaszczyk, Maria B.; Vaughan, Christopher L. (2007). "Re-interpreting the evidence for bipedality in Homo floresiensis". South African Journal of Science. 103 (103): 103.
  74. ^ Callaway, Ewen (16 April 2008). "Flores 'hobbit' walked more like a clown than Frodo". New Scientist. Vol. 3. pp. 983–984.
  75. ^ Moore, Mark. "How the Homo floresiensis kept their tools as they shrank into island life". phys.org. The Conversation. Retrieved 2 December 2022.
  76. ^ Callaway, E. (30 March 2016). "Did humans drive 'hobbit' species to extinction?". Nature. doi:10.1038/nature.2016.19651. S2CID 87482781.
  77. ^ Veatch, E. Grace; Tocheri, Matthew W.; Sutikna, Thomas; McGrath, Kate; Wahyu Saptomo, E.; Jatmiko; Helgen, Kristofer M. (May 2019). "Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology of Homo floresiensis and associated fauna". Journal of Human Evolution. 130: 45–60. Bibcode:2019JHumE.130...45V. doi:10.1016/j.jhevol.2019.02.002. hdl:2440/121139. PMID 31010543.
  78. ^ Meijer, Hanneke J. M.; Sutikna, Thomas; Wahyu Saptomo, E.; Tocheri, Matthew W. (July 2022). "More bones of Leptoptilos robustus from Flores reveal new insights into giant marabou stork paleobiology and biogeography". Royal Society Open Science. 9 (7): 220435. Bibcode:2022RSOS....920435M. doi:10.1098/rsos.220435. ISSN 2054-5703. PMC 9277297. PMID 35845853.
  79. ^ Lee, Julian (24 October 2012). "Hobbit makers ban uni from using 'hobbit'". 3 News NZ. Archived from the original on 7 June 2013. Retrieved 29 October 2013.
  80. ^ Somma, Brandon (4 January 2013). "Masters of the Mockbuster:What The Asylum Is All About". the-artifice.com. The Artifice. Retrieved 20 June 2024.
  81. ^ a b "The Hobbit producers sue 'mockbuster' film company". BBC. 8 November 2012. Retrieved 20 June 2024.
  82. ^ a b Fritz, Ben (10 December 2012). "'Hobbit' knockoff release blocked by judge". Los Angeles Times. Retrieved 11 December 2012.

See also[edit]

Associated articles[edit]


External links[edit]