Hormone replacement therapy (male-to-female)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
A transgender woman (assigned male at birth), 18 months before starting HRT (left), and after 28 months of HRT (right). No surgery was involved.

Hormone replacement therapy of the male-to-female type (MTF HRT) is a type of hormone replacement therapy for transgender and transsexual people. It changes the balance of sex hormones in the body. Some intersex people also receive HRT, either starting in childhood to confirm the assigned sex, or later, if this assignment has proven to be incorrect.

Its purpose is to cause the development of the secondary sex characteristics of the desired sex. It cannot undo many of the changes produced by the first natural occurring puberty, which may necessitate surgery and/or epilation (see below).

Formal requirements for HRT[edit]

The requirements for hormone replacement therapy vary immensely, often psychological counselling is required.

Under WPATH guidelines, mental health providers require individuals to satisfy two sets of criteria — eligibility and readiness — to undertake any stage of transition including hormone replacement therapy. Eligibility involves the patient meeting requirements from a major diagnostic tool, such as the ICD-10, DSM-IV-R or the DSM-V. ICD-10 requirements are for either Transsexualism or Gender identity disorder of childhood.[1]

The ICD-10 criteria for Transsexualism include the individual having a transsexual identity of over 2 years, a strong and persistent desire to live as a member of the opposite sex, usually accompanied by the desire to make their body as congruent as possible with the preferred sex through surgery and hormone treatments. These individuals cannot be diagnosed with Transsexualism if it is believed to be a result of another mental disorder, or a genetic, intersex or chromosomal abnormality.

The ICD-10 criteria for Gender identity disorder of childhood in males include the individual being pre-pubescent and having intense and persistent distress about being a boy. The distress must be present for at least six months. The child must either:

  1. Have a preoccupation with stereotypical female activities, as shown by crossdressing, simulating female attire, or an intense desire to join in the games and pastimes of girls, rejecting male games and pastimes.
  2. Have persistent denial relating to their male anatomy. This can be shown through believing they will grow up to be a woman, that their penis or testes are disgusting or will disappear, or that it would be better not to have a penis.

The DSM-IV-R criteria for Gender Identity Disorder includes four main criteria. The DSM-IV-R also requests that the individual's sexuality is noted.

Strong and persistent cross-gender identity[edit]

In children this may be demonstrated by them meeting four or more of the following criteria:

  1. An insistence that one is or desires to be the other sex.
  2. Girls(MTFs) must display a preference crossdressing or simulating female attire, and boys(FTMs) must persistently wear only stereotypical male clothing.
  3. Persistent fantasies of being the other sex, or strong and persistent preference for cross-sex roles in make-believe play.
  4. Intense desire to participate in stereotypical games of the other sex.

adolescents and adults must display a persistent desire to be the other sex, frequent passing as the other sex, desire to live or be treated as the other sex, or the conviction that they have the typical feelings and reactions of the other sex.

Persistent discomfort with their sex or a sense of inappropriateness in the gender role of that sex[edit]

In boys this may manifest as an assertion that their penis or testes are disgusting or will disappear, or asserting that it is better not to have a penis.

In adults and adolescents this manifests as a preoccupation with removing primary or secondary sex characteristics, such as a demand for surgery or hormone replacement therapy.

The disturbance must not be concurrent with a physical intersex condition[edit]

The disturbance causes clinically significant distress or impairment in social, occupational or important areas of functioning[edit]

The DSM-V moves from Gender Identity Disorder to Gender Dysphoria to avoid the implication that gender nonconformity is in itself a mental disorder, but a similar entry remains in the DSM-V so that individuals may still seek treatment.[2] The DSM-V, unlike the DSM-IV and ICD-10, separates Gender Dysphoria from sexual paraphilias, and diagnoses on the basis of a strong desire that one has feelings and convictions typical of the other sex, or that one strongly desires to be treated as the other sex or be rid of one's sex characteristics.

The readability of patients to transition is also relevant to undertake hormone replacement therapy, which includes the patient's likelihood to take hormones in a responsible manner, have made progress in mastering other identified problems that leads to improving or continuing stable mental health, and have had further consolidation of gender identity during psychotherapy or Real Life Experience of their desired gender role.[3]

Some organizations still require a period of time living as the desired gender role, based on standards such as the Standards of Care for the Health of Transsexual, Transgender, and Gender Nonconforming People (WPATH). This period is sometimes called the Real Life Experience (RLE). The Endocrine Society in 2009 specified that individuals should either have a documented 3 months Real Life Experience or a period of psychotherapy of length specified by their mental health provider, usually a minimum of 3 months.[3]

Some people, especially individuals from the transgender community, say that RLE is psychologically harmful and is a form of "gatekeeping" — effectively barring people from transitioning for as long as possible, if not permanently.[who?]

Some individuals choose to self-administer their medication ("do-it-yourself"), often because available doctors have too little experience in this matter, or no doctor is available in the first place. Sometimes, trans persons choose to self-administer because their doctor will not prescribe hormones without a letter from the patient's therapist stating that the patient meets the diagnostic criteria for GID and is making an informed decision to transition. Many therapists require at least three months of continuous psychotherapy and/or a real life test in order to write such a letter as is suggested in the HBIGDA Standards of Care. As many individuals must pay for evaluation and care out-of-pocket, expense can also be prohibitive to pursuing such therapy.

Aside from economic factors, self-medication can occur due to poor access to medication, even where health care is provided free. In a UK NHS patient survey conducted in 2008, 5% of respondents acknowledged resorting to self-medication. The report also highlights that 46% of NHS patients were dissatisfied with the duration endured in order to receive hormone therapy. In acknowledgement of this problem, the report in part concludes that "The NHS must provide a service that is easy to access so that vulnerable patients do not feel forced to turn to DIY remedies such as buying drugs online with all the risks that entails. Patients must be able to access professional help and advice so that they can make informed decisions about their care, whether they wish to take the NHS or private route without putting their health and indeed their lives in danger." [4] This recognizes that self-administration of certain medications (namely ethinyl estradiol) and antiandrogens (namely spironolactone, cyproterone acetate, flutamide, and nilutamide) is potentially dangerous and can cause an elevation in liver enzymes or other potentially dangerous adverse effects.[5]

Medical contraindications[edit]

Some medical conditions may serves as a reason to withhold hormone replacement therapy due to the resultant harm that would be caused to the patient. These interfering factors are described in medicine as a contraindication.

Types of therapy[edit]


  • The dosages used are often higher than replacement doses for cisgender women, although the official guideline for endocrinologists recommends "maintain[ing] sex hormone levels within the normal range for the person’s desired gender".[6] Usually the dosage is reduced after an orchiectomy (the removal of the testes) or sex reassignment surgery. However, the practice of lowering estrogen doses after such operations has been carried over from the days when very high doses of estrogen were required to decrease testosterone since antiandrogens were not used. In fact, high doses (though using a less potent estrogen, estradiol, that is endogenous to the human body rather than the risky ethinyl estradiol and conjugated estrogens used in the past) are recommended during the first ten or so years of HRT to fully develop, with or without having had an orchiectomy or sex reassignment. After usually ten years or so the dosages can be reduced.
  • Many different variations of estradiol exist as well as other types of estrogens although the ones most commonly used are either micronized estradiol, estradiol acetate, estradiol valerate, estradiol cypionate, estradiol enanthate, conjugated estrogens, and esterified estrogens.
  • Injectable, implanted, nasal, oral, sublingual, gel, spray, and transdermal patch formulations are available.
  • As dosage increases, risks increase as well. Therefore, those with relative contraindications should start at lower doses and increase dosage more gradually.



  • The most commonly used antiandrogens as a component of HRT for trans women include the steroidal antiandrogens spironolactone and cyproterone acetate. Spironolactone is the most frequently used antiandrogen in the United States. It is relatively safe and inexpensive. Cyproterone acetate, which is unavailable in the United States, is more commonly used in the rest of the world.
  • Spironolactone is a potassium-sparing diuretic that is mainly used to treat low-renin hypertension, edema, hyperaldosteronism, and low potassium levels caused by other diuretics. It can cause high potassium levels, hyperkalemia, and is therefore contraindicated in people with renal failure or who otherwise have elevated potassium levels. Spironolactone prevents the formation of androgens in the testes (though not in the adrenals) by acting as a progestin and by inhibiting enzymes involved in androgen production,[27][28][29] and is also an androgen receptor antagonist (that is, it prevents androgens from binding to and activating the androgen receptor).[30][31][32][33][34]
  • Cyproterone acetate is powerful antiandrogen and progestin that suppresses gonadotropin levels (which in turn reduces androgen levels), blocks androgens from binding to and activating the androgen receptor, and inhibits enzymes in the androgen biosynthesis pathway. It has been used as a means of androgen deprivation therapy to treat prostate cancer. If used long-term in dosages of 150 mg or higher it can possibly lead to liver damage or failure.[35][36][37][38][39][40][41][42][43]
  • Other antiandrogens that are used as a component of HRT for trans women include flutamide, nilutamide, and bicalutamide, all three of which are primarily used in the treatment of prostate cancer.[44][45] Unlike spironolactone and cyproterone acetate, these antiandrogens are non-steroidal, pure androgen receptor antagonists and do not lower androgen levels but rather act solely to block androgens from binding to and activating the androgen receptor. However, they are very potent in doing so, and are highly effective as antiandrogens. Moreover, bicalutamide, due in part to its high selectivity for the androgen receptor, has improved tolerability and safety profiles relative to spironolactone and cyproterone acetate. Notably, bicalutamide has largely replaced flutamide and nilutamide in clinical practice, similarly due to improved tolerability and especially safety. Enzalutamide is a newer non-steroidal antiandrogen with greater antiandrogen efficacy that is still on-patent and is extremely expensive. Non-steroidal antiandrogens may be an appealing option for those who wish to better preserve sex drive and function[46] and/or fertility,[47] as well as for those who desire more selective action with a reduced side effect profile relative to the profiles of spironolactone and cyproterone acetate (which increase the risk of depressive symptoms, among other undesirable adverse effects).[48]
  • Certain antiandrogens do not lower testosterone levels or prevent its action upon tissues but rather its metabolite, dihydrotestosterone (DHT), from forming. These medications can be used when the patient has male-pattern hair loss (androgenetic alopecia) and/or an enlarged prostate (benign prostatic hyperplasia). DHT contributes to the manifestation and exacerbation of both. Two medications are currently available to prevent the creation of DHT, finasteride and dutasteride. DHT levels can be lowered up to approximately 60-75% with the former depending upon dosage and up to 93-94% with the latter. These medications have also been found to be effective in the treatment of hirsutism in women.

GnRH analogues[edit]

  • In both sexes, the hypothalamus releases gonadotropin-releasing hormone (GnRH) to stimulate the pituitary gland to produce luteinizing hormone (LH) and follicle-stimulating hormone (FSH) which in turn cause the gonads to produce sex steroids such as androgens and estrogens. In adolescents of either sex with relevant indicators, GnRH analogues, such as goserelin acetate can be used to suspend the advance of sex steroid-induced, inappropriate pubertal changes for a period without inducing any changes towards the sex with which the patient currently identifies. GnRH agonists work by initially over stimulating the pituitary then rapidly desensitizing it to the effects of GnRH. After an initial surge, over a period of weeks, gonadal androgen production is greatly reduced. On the other hand, GnRH antagonists act by blocking the action of GnRH in the pituitary. There is considerable controversy over the earliest age, and for how long it is clinically, morally and legally safe to do this. The previous, sixth edition of the World Professional Association for Transgender Health Standards of Care permit from Tanner stage 2, but do not allow the addition of hormones until 16, which could be five or more years. The sex steroids do have important other functions. Also, some skeletal changes (such as increased height), which may be considered masculine, are not hindered by GnRH analogues.
  • GnRH analogues are often prescribed to prevent the reactivation of testicular function where surgeons require the cessation of estrogens prior to surgery.
  • The high cost of GnRH analogues is a significant factor in their relative lack of use in transgender and transsexual individuals. However GnRH analogues are used as standard practice in the United Kingdom.

Effects of HRT[edit]


For trans women, taking estrogens causes, among other changes:

  • Redistribution of body fat in a feminine pattern.
  • Growth of the breasts, with accompanying enlargement of the nipples.
  • Changes to androgenic (body) hair.
  • Widening of the pelvis (in those who have not yet experienced epiphyseal byclosure).
  • Thinning of the skin.

For male-to-female transgender people, HRT often includes antiandrogens in addition to the estrogens and progestogens mentioned above.

HRT does not usually cause facial hair growth to be impeded or the voice to change.

Partially reversible changes[edit]

  • Breast development (may need reconstructive surgery to reverse the effect)[49]
  • Infertility, eventually leading to chemically induced aspermatogenesis. The reversibility of this effect depends on the length of time and effects of androgen suppressing substances. Androgen suppressing drugs are not a substitute for other birth control methods.

Reversible changes[edit]

  • Decreased libido
  • Redistribution of body fat (most of time)
  • Reduced muscle development
  • Various skin changes
  • Significantly reduced and lightened body hair
  • Change in body odor and sweat production
  • Less prominence of veins
  • Ocular changes
  • Reduced gonadal "gonads" size

The psychological changes are harder to define, because HRT is usually the first physical action that takes place when transitioning and the act itself of beginning HRT has a significant psychological effect, which is difficult to distinguish from hormonally induced changes.

What HRT cannot change[edit]

  • HRT cannot reverse bone changes that have already been established by puberty. Consequently, total height, the length of the arms, legs, hands, and feet, and the width/size of the shoulders and rib cage are all not affected by HRT. However, details of bone shape change throughout life, with bones becoming heavier and more deeply sculptured under the influence of androgens, and HRT will prevent such changes from developing any further.
  • The width of the hips are not affected in individuals in whom epiphyseal closure (fusion and closure of the ends of bones, which prevents any further lengthening) has taken place, an event which occurs in most people between 18 and 25 years of age.[citation needed] In addition, already established changes to the shape of the hips cannot be reversed by HRT whether epiphyseal closure has taken place yet or not.[citation needed]
  • Already established changes to the sculpture of the bone structure of the face are not affected by HRT. A significant majority of the craniofacial changes occur during adolescence, although continual through much of adult life postadolescenct growth is considerably slower and minimal by comparison.[50] Also unaffected is the prominence of the thyroid cartilage (Adam's apple). These changes may be reversed by surgery (facial feminization surgery and tracheal shave, respectively) instead.
  • During puberty, the voice deepens in pitch and becomes more resonant, effects which are permanent and are not affected by HRT. Voice therapy and optionally surgery may be used instead to achieve a more female sounding voice.
  • Facial hair develops during puberty, and this is a change that is only slightly affected by HRT. Facial hair may be near-permanently removed with laser hair removal or permanently with electrolysis instead.


  • The most significant cardiovascular risk for transgender women is the pro-thrombotic effect of estrogens (Increased blood clotting.) This manifests most significantly as an increased risk for thromboembolic disease: deep venous thrombosis (DVT) and pulmonary embolism (PE) which occurs when DVTs break off and migrate through the venous system to the lungs. It is important for any person on female hormones to immediately seek medical care if she develops pain or swelling of one leg (especially calf) as this is the predominant symptom of a DVT, or if she develops symptoms of PE: chest pain, shortness of breath, fainting, or palpitations (even without leg pain or swelling).
  • In practice this becomes very important to transgender women undergoing surgery. Ethinyl and conjugated oral estrogens should be withheld for a week before and until two weeks after surgery.
  • DVTs occur more frequently in the first year of treatment with estrogens. However this may represent a 'screening by treatment' of patients who may have genetic predispositions to thromboembolic disease, with those who are more likely to develop DVTs doing so early on in therapy. However, if patients have a family history of thromboembolic disease, screening for known disease may be appropriate.
  • DVT risk is higher with oral estrogen (particularly ethinyl estradiol and conjugated estrogens) rather than injectable, transdermal, implantable, and nasal estrogens.[51]
  • DVT risk also increases with age and with smoking, so many clinicians advise using the safer estrogen formulations in patients who smoke or are older than age 40.
  • If screening is undertaken for known pro-thrombotic mutations such as Factor V-Leiden, antithrombin III, and protein C or S deficiency, it should be done so to increase the safety of hormonal therapy and not as a screen for who may undertake hormonal therapy. Given that the risk of warfarin treatment in a relatively young, well-informed, and otherwise healthy population is quite low and that the risk of adverse physical and psychological outcome for untreated transgender patients is high, a prothrombotic mutation is not an absolute contraindication for hormonal therapy. (See: Levy, et al. "Endocrine Intervention for Transsexuals" Clin Endo 2003. 59:409-418.)
  • The antiandrogen bicalutamide is associated with an increased risk of heart failure when used as monotherapy (i.e., without any other drugs).[52] A study of prostate cancer patients also showed an increased number of deaths unrelated to cancer among patients taking 150 mg/day bicalutamide.[53] This prompted Health Canada to withdraw its approval for 150 mg bicalutamide as monotherapy.[54] The increased death rate has not been observed when bicalutamide is combined with a method of reducing androgen production, such as a GnRH analogue or orchiectomy. The reason for the increased rate of heart failure and death seen with bicalutamide monotherapy is not well-understood.


  • Current facial hair is only slightly affected (some reduction in density, coverage, and slower growth) by antiandrogens. Those who are less than a decade past puberty and/or whose race generally lacks a significant amount of facial hair may have better results with antiandrogens. Those taking antiandrogens will have better results with electrolysis/laser hair removal than those who are not. If one is still in their teens or early twenties, there will be prevention of new facial hairs from developing if testosterone levels are within the female range.[55][56]
  • Body hair (chest, periareolar, shoulders, back, abdomen, buttocks, thighs, tops of hands, tops of feet) will, over time, turn from terminal ("normal") hairs to vellus hairs (very tiny, blonde "baby" hairs). Hair on the arms, perianal, and perineal will reduce but may not turn to vellus hair on the latter two regions (some natal females also have some hair in these areas). Underarm hair will slightly change in texture and length, pubic hair becomes more typically female in pattern. Lower leg hair becomes less dense in concentration. All depend upon genetics.[55][56]
  • Head hair may slightly change in texture, curl, and color (new hairs that is, not hair that has already formed and reached the surface prior to HRT), this is especially likely with hair growth from previously bald areas.[citation needed]
  • Eyebrow hair becomes less "bushy" or scattered.[citation needed]

Urogynecological effects[edit]

  • Transgender women report a sometimes significant reduction in libido, all depending on the dosage of antiandrogens. A small number of post-operative transsexual women may take small amounts of testosterone to boost the libido. Many pre-operative transsexual women simply wait until after sex-reassignment surgery to begin an active sex life (due to how they feel towards their genitals and/or an aversion to other sex acts) and for newly post-operative women how satisfied they are with the results. Raising estrogen dosage or adding a progestogen has also raised the libido of some trans women.
  • Spontaneous and morning erections decrease in frequency significantly, however some who have had an orchiectomy still experience morning erections. Voluntary erections may or may not be possible depending on the amount of hormones and/or antiandrogens being taken; it varies a lot depending on individual biochemistry, dosing, and anatomy.
  • Testi volume is reduced by about 25% with typical dosages and as much as 50% in higher dosages, especially after a year of HRT.[55] This is in response to the decrease in Leydig cells, Sertoli cells, and interstitial tissue, which produce both sperm and testosterone. When testosterone is dramatically reduced spermatogenesis is halted almost completely, when the cells that are involved in these processes go unused they atrophy (shrink).
  • The prostate shrinks.
  • The bladder shrinks.
  • The line that runs down the underside of the penis and down the middle of the scrotum, the peno-scrotal raphe (where the urogenital folds fused early in the womb), will darken.
  • Minor water retention is likely. (If spironolactone is used as an antiandrogen then it will tend to counter this effect, since it is a diuretic.[citation needed])


  • Childbearing, as experienced by cisgender women, is speculative with current technology. Pre-operative sperm banking can be done, however, allowing artificial insemination to be used to produce genetic offspring with someone else at a later date. Medical advances in the near future may one day make this possible by using a donor uterus long enough to carry a child to term as anti-rejection drugs do not seem to affect the fetus. As of now, the first uterine transplant, done on October 4, in Sweden proved to be successful.[57][58][59][60] The DNA in a donated ovum can be removed and replaced with the DNA of the receiver. Further in the future stem cell biotechnology may also make this possible, with no need for anti-rejection drugs.

However, a problem may arise with the structure of hip bones, since cisgender women generally have larger hip bones to accommodate pregnancy.


  • Both estrogens and androgens are necessary in all humans for healthy bone. (Young healthy women produce about 10 mg of testosterone monthly. Higher bone mineral density in males is associated with higher serum estrogen.)[citation needed]
  • Bone is not static. It is constantly being reabsorbed and created. Osteoporosis results when bone formation occurs at a rate less than bone reabsorption.[citation needed]
  • Estrogen is the predominant sex hormone that slows bone loss (even in men.)[citation needed]
  • Both estrogen and testosterone help stimulate bone formation (T, especially at puberty.)[citation needed]
  • The hips will rotate slightly forward due to changes in the tendons so hip discomfort is not uncommon.[citation needed]
  • If estrogen therapy is conducted prior to the pelvis ossification that occurs around the age of 25, the pelvic outlet and inlet open slightly. This widening will also widen the femora as they are connected to the pelvis. The pelvis will still have some masculine characteristics by default but the end result will be wider hips than a normal male and closer to a cis female.[citation needed]

Drug interactions[edit]

  • Any drug can cause adverse reactions with other medications so it is wise to check with a doctor or pharmacist when starting any new medication.
  • Of the estrogen formulations commonly used, ethinyl estradiol (commonly found in birth control pills) has the greatest number of adverse reactions.


  • The uppermost layer of skin, the stratum corneum, becomes thinner and therefore more translucent and pinkish (spider veins may appear or be more noticeable), less collagen, more susceptible to tearing and irritation from scratching or shaving, increased tactile sensation, and slightly lighter in color due to a slight decrease in melanin (pigment).
  • Skin becomes softer.[61]
  • Sebaceous gland activity (which is triggered by androgens) lessens which lowers the amount of sebum (oil) production on the skin and scalp, consequently the skin becomes less prone to the formation of acne due to the less quantity of oil that is produced. Dry skin becomes a problem and lotions and oils may be necessary.[55][56]
  • The skin's pores become smaller due to the low quantities of sebum produced
  • Body odor (skin, sweat, and urine) will become less "metallic," "sharp," or "acrid" and more "sweet" and "musky."
  • Many apocrine glands (type of sweat glands) become inactive and body odor decreases. Sebum also contributes to body odor, the production of which is reduced by antiandrogens (as described above).
  • More subcutaneous fat tissue accumulates.[55] This gives a more puffy/softer appearance. Consequently, dimpling, or cellulite, will be more apparent on the thighs and buttocks due to this along with the thinness of the skin.
  • Susceptibility to sunburn increases possibly due to the thinner skin and/or less skin pigment.
  • Because of the increase in adipose tissue in the hips, thighs, and rear, stretch marks (striae distensae) may appear on the skin in these areas.

Ocular changes[edit]

  • The lens of the eyes changes in curvature.[62][63][64][65]
  • Due to the decreased androgens, the meibomian glands (that is the sebaceous gland on the upper and lower eyelids that open up at the edges) produce less oil, which is necessary for the tear film preventing the evaporation of the watery layer, causing the eyes to dry up more often.[66][67][68][69][70]


  • Sensitivity to male body odor(s) (including male pheromones) may be positively correlated with elevated estrogen levels. Overall, olfactory senses may increase.[citation needed]

Breast development[edit]

  • Breast, nipple, and areolar development takes 4–6 years to complete depending upon genetics, and sometimes as long as 10 years.[citation needed] It is normal for there to be a "stall" in breast growth during transition, or for the size of one breast to be a little bigger than the other. Transwomen who undergo HRT often experience breast development which is below the comparable cis female norm (many seek breast augmentation); it is rare for an HRT patient to opt for breast reduction. The size of the rib cage and shoulder width also play a role in the perceivable "size" of the breasts; both characteristics are usually smaller in cis females, i.e., if a cis female and a trans female were to have the same cup size, the transwoman's breasts would most likely appear smaller. Thus when a trans woman opts to have breast augmentation, the implants used are, on the average, larger than those commonly used by cis females.[55]
  • The nipples often become more sensitive to stimulation.
  • Many women in clinical trials used stem cells from fat to regrow breasts from total mastectomies. This would replace the need for artificial implantation.[71]
  • As in a genetic woman during puberty, ducts and coopers ligaments will develop under the influence of estrogen. Progesterone will cause the actual milk sacks (alveoli) to grow and develop and given the right stimuli, the breasts can lactate as in a cis woman.

Fat tissue distribution[edit]

  • Adipose (fat) tissue distribution in the body slowly changes over months and years. The body will now tend to accumulate new adipose tissue (fat) in a typically female pattern. This includes the hips, thighs, rear, pubis, upper arms, and breasts. The body will now tend to use/burn the old adipose tissue in the waist making the waist appear smaller as well as on the shoulders and back.[55]
  • Subcutaneous adipose tissue increases in the face (cheeks and lips) making the face appear puffier, appears to "round out" the face, and the face appears less "drawn" or "hollow" with slightly less emphasis on the jaw due to the lower portion of the cheeks having filled in.
  • Gleuteofemoral fat ( fat on hips, thighs and buttocks) will begin to accumulate. This fat has a higher content of omega-3 fatty acids and its purpose is to be used for lactation.


  • Estrogens may predispose to gallbladder disease - especially in older and obese people.[72]
  • Estrogens (especially oral forms) may cause elevations in transaminases (liver function tests) indicating liver toxicity.[citation needed] LFTs should therefore be periodically monitored in transgender women.


  • Mood changes can occur, such as the development of depression. However, many trans women report significant mood-lifting effects from HRT as well. In addition, the risk of depressive side effects is more particularly common in those who take progestins. Medroxyprogesterone acetate, in particular, has been shown to cause depression in certain individuals,[73][74][75][76][77] perhaps due to its possible effect on dopamine levels;[78] though, this effect may be largely reliant on its strong inhibitory effects on sex hormone production.
  • Migraines can be made worse or unmasked by estrogen therapy.[citation needed]
  • Estrogens can induce the development of prolactinomas, which is why prolactin levels should periodically be monitored in transgender women. Milk discharge from the nipples can be a sign of elevated prolactin levels. If a prolactinoma becomes large enough, it can cause visual changes (especially decreased peripheral vision), headaches, mood changes, depression, dizziness, nausea, vomiting, and symptoms of pituitary failure like hypothyroidism.
  • Some people have noticed a feeling of calmness/self-contentment after starting HRT.
  • Recent studies have indicated that cross-hormone therapy in trans women may result in a reduction in brain volume towards female proportions.[79]


  • Estrogen therapy causes decreased insulin sensitivity which places transgender women at increased risk of developing type II diabetes.[citation needed]
  • Metabolic rate can alter causing an increase or decrease in weight, energy levels, changes to sleep patterns and also temperature sensitivity.[citation needed] Due to androgen deprivation a loss of muscle tone, a slower metabolism, and physical weakness becomes more evident. Building muscle will take more work than before. The addition of a progestogen may increase energy although an increase in appetite may be seen as well.[citation needed]

Hormone levels[edit]

During HRT, especially in the early stages of treatment, blood work should be consistently done to assess hormone levels and liver function. It is suggested by Endocrine Society that individuals have blood tests every 3 months in the first year of hormone replacement therapy for estradiol and testosterone and monitor spironolactone, if used, every 2–3 months in the first year.[3]

Hormone Endocrine Society [80] Royal College of Psychiatry [81]
Estradiol Level (pg/ml) Less than 200pg/ml 80-140pg/ml
Testosterone Level (ng/dl) Less than 55 ng/dl "Well below normal male range"

The optimal ranges listed for estrogen only apply to individuals taking bioidentical hormones (i.e., estradiol, including esters) and do not apply to those taking synthetic or other non-bioidentical preparations (e.g., ethinyl estradiol or conjugated equine estrogens (Premarin)). While the ranges given are optimal, the Endocrine Society further state that estrogen levels of 200pg/ml ought not to be exceeded.[82]

There should also be medical monitoring, including complete blood counts, renal and liver function, lipid and glucose metabolism, as well as monitoring prolactin levels, body weight and blood pressure.[83]

See also[edit]


  1. ^ "ICD-10 Diagnostic Codes". ICD-10:Version 2010. Retrieved 2014-06-08. 
  2. ^ "DSM-V Fact Sheet" (PDF). Retrieved 2014-06-08. 
  3. ^ a b c Hembree, Wylie, C; Cohen-Kettenis, Peggy; Delemarre-van de Waal, Henriette; Gooren, Louis; Meyer III, Walter; Spack, Norman; Tangpricha, Vin; Montori, Victor (September 2009). "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline" (PDF). Clinical Endocrinology & Metabolism 94 (9): 11. doi:10.1210/jc.2009-0345. PMID 19509099. Retrieved 2014-06-07. 
  4. ^ "Survey of Patient Satisfaction with Transgender Services" (PDF). Retrieved 2016-01-08. 
  5. ^ Becerra Fernández A, de Luis Román DA, Piédrola Maroto G (October 1999). "Morbilidad en pacientes transexuales con autotratamiento hormonal para cambio de sexo" [Morbidity in transsexual patients with cross-gender hormone self-treatment]. Medicina Clínica (in Spanish) 113 (13): 484–7. PMID 10604171. 
  6. ^ Hembree, W. C.; Cohen-Kettenis, P.; Delemarre-van de Waal, H. A.; Gooren, L. J.; Meyer, W. J.; Spack, N. P.; Tangpricha, V.; Montori, V. M. (2009-09-01). "Endocrine Treatment of Transsexual Persons:An Endocrine Society Clinical Practice Guideline" (pdf). Journal of Clinical Endocrinology & Metabolism. The Journal of Clinical Endocrinology & Metabolism. pp. 3132–3154. doi:10.1210/jc.2009-0345. Retrieved 31 October 2013.  Cite uses deprecated parameter |coauthors= (help)
  7. ^
    • Orentreich N, Durr NP (July 1974). "Mammogenesis in transsexuals". Journal of Investigative Dermatology 63 (1): 142–6. doi:10.1111/1523-1747.ep12678272. PMID 4365991. 
    • Mauvais-Jarvis P, Kuttenn F, Gompel A, Malet C, Fournier S (1986). "[Estradiol-progesterone interaction in normal and pathological human breast cells]". Ann. Endocrinol. (Paris) (in French) 47 (3): 179–87. PMID 3535636. 
    • Mauvais-Jarvis P, Kuttenn F, Gompel A. (1986). "Antiestrogen action of progesterone in breast tissue.". Breast Cancer Research and Treatment 8 (3): 179–188. doi:10.1007/BF01807330. PMID 3297211. 
    • Cooke BA, King RJB, van der Molen HJ (eds.), ed. (1988). New Comprehensive Biochemistry: Hormones and Their Actions, Part I. vol. 18a. Amsterdam: Elsevier. 
    • Cyrlak D, Wong CH (December 1993). "Mammographic changes in postmenopausal women undergoing hormonal replacement therapy". American Journal of Roentgenology 161 (6): 1177–83. doi:10.2214/ajr.161.6.8249722. PMID 8249722. 
    • Gorins A, Denis C (1995). "Effects of progesterone and progestational hormones on the mammary gland". Archives d'anatomie et de cytologie pathologiques 43 (1–2): 28–35. PMID 7794024. 
    • Futterweit W (April 1998). "Endocrine therapy of transsexualism and potential complications of long-term treatment". Archives of Sexual Behavior 27 (2): 209–26. doi:10.1023/A:1018638715498. PMID 9562902. 
    • edited by Dallas Denny. (1998). "17. Hormonal Therapy in Gender Dysphoria: The Male-to-Female Transsexual". In Denny D (ed.). Current Concepts in Transgender Identity. chap. by Basson R, Prior JC. New York: Garland Publishing. ISBN 0-8153-1793-X. OCLC 37156496. 
    • Colin, Claude. "Hormone Dependence of the Mammary Tissue". Retrieved June 14, 2008. 
    • Shyamala G (January 1999). "Progesterone signaling and mammary gland morphogenesis". Journal of Mammary Gland Biology and Neoplasia 4 (1): 89–104. doi:10.1023/A:1018760721173. PMID 10219909. 
    • Kanhai RC, Hage JJ, van Diest PJ, Bloemena E, Mulder JW (January 2000). "Short-term and long-term histologic effects of castration and estrogen treatment on breast tissue of 14 male-to-female transsexuals in comparison with two chemically castrated men". The American Journal of Surgical Pathology 24 (1): 74–80. doi:10.1097/00000478-200001000-00009. PMID 10632490. 
    • Schams D, Kohlenberg S, Amselgruber W, Berisha B, Pfaffl MW, Sinowatz F (May 2003). "Expression and localisation of oestrogen and progesterone receptors in the bovine mammary gland during development, function and involution". The Journal of Endocrinology 177 (2): 305–17. doi:10.1677/joe.0.1770305. PMID 12740019. 
    • Lamote I, Meyer E, Massart-Leën AM, Burvenich C (March 2004). "Sex steroids and growth factors in the regulation of mammary gland proliferation, differentiation, and involution". Steroids 69 (3): 145–59. doi:10.1016/j.steroids.2003.12.008. PMID 15072917. 
    • Swerdloff RS, Ng J, and Palomeno GE (March 2004). "Gynecomastia: Etiology, Diagnosis, and Treatment". Archived from the original on April 14, 2008. Retrieved June 14, 2008. 
    • Baltzell K, Eder S, Wrensch M (January 2005). "Breast carcinogenesis: can the examination of ductal fluid enhance our understanding?". Oncology Nursing Forum 32 (1): 33–9. doi:10.1188/05.ONF.33-39. PMID 15660141. 
    • Brisken C. "Genetic dissection of signaling pathways important in breast development and breast cancer". Retrieved June 14, 2008. 
    • Macias, Hector; Hinck, Lindsay (2012). "Mammary gland development". Wiley Interdisciplinary Reviews: Developmental Biology 1 (4): 533–557. doi:10.1002/wdev.35. ISSN 1759-7684. PMC 3404495. PMID 22844349. 
  8. ^ a b Meyer WJ, Webb A, Stuart CA, Finkelstein JW, Lawrence B, Walker PA (April 1986). "Physical and hormonal evaluation of transsexual patients: a longitudinal study". Archives of Sexual Behavior 15 (2): 121–38. doi:10.1007/bf01542220. PMID 3013122. 
  9. ^ Wierckx K, Gooren L, T'Sjoen G (2014). "Clinical review: Breast development in trans women receiving cross-sex hormones". J Sex Med 11 (5): 1240–7. doi:10.1111/jsm.12487. PMID 24618412. 
  10. ^ Stelmanska, Ewa; Kmiec, Zbigniew; Swierczynski, Julian (2012). "The gender- and fat depot-specific regulation of leptin, resistin and adiponectin genes expression by progesterone in rat". The Journal of Steroid Biochemistry and Molecular Biology 132 (1-2): 160–167. doi:10.1016/j.jsbmb.2012.05.005. ISSN 0960-0760. 
  11. ^ a b Hirschberg AL (2012). "Sex hormones, appetite and eating behaviour in women". Maturitas 71 (3): 248–56. doi:10.1016/j.maturitas.2011.12.016. PMID 22281161. 
  12. ^ Pfaus JG (1999). "Neurobiology of sexual behavior". Curr. Opin. Neurobiol. 9 (6): 751–8. doi:10.1016/s0959-4388(99)00034-3. PMID 10607643. 
  13. ^ Frye CA, Bayon LE, Pursnani NK, Purdy RH (1998). "The neurosteroids, progesterone and 3alpha,5alpha-THP, enhance sexual motivation, receptivity, and proceptivity in female rats". Brain Res. 808 (1): 72–83. doi:10.1016/s0006-8993(98)00764-1. PMID 9795145. 
  14. ^ Friess E, Tagaya H, Trachsel L, Holsboer F, Rupprecht R (May 1997). "Progesterone-induced changes in sleep in male subjects". The American Journal of Physiology 272 (5 Pt 1): E885–91. PMID 9176190. 
  15. ^ Montplaisir J, Lorrain J, Denesle R, Petit D (2001). "Sleep in menopause: differential effects of two forms of hormone replacement therapy". Menopause 8 (1): 10–6. doi:10.1097/00042192-200101000-00004. PMID 11201509. 
  16. ^ Söderpalm AH, Lindsey S, Purdy RH, Hauger R, Wit de H (April 2004). "Administration of progesterone produces mild sedative-like effects in men and women". Psychoneuroendocrinology 29 (3): 339–54. doi:10.1016/S0306-4530(03)00033-7. PMID 14644065. 
  17. ^ van Broekhoven F, Bäckström T, Verkes RJ (November 2006). "Oral progesterone decreases saccadic eye velocity and increases sedation in women". Psychoneuroendocrinology 31 (10): 1190–9. doi:10.1016/j.psyneuen.2006.08.007. PMID 17034954. 
  18. ^ Schumacher M, Guennoun R, Ghoumari A, et al. (June 2007). "Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system". Endocrine Reviews 28 (4): 387–439. doi:10.1210/er.2006-0050. PMID 17431228. 
  19. ^ Golparvar M, Ahmadi F, Saghaei M (January 2005). "Effects of progesterone on the ventilatory performance in adult trauma patients during partial support mechanical ventilation" (PDF). Archives of Iranian Medicine 8 (1): 27–31. 
  20. ^ Georg Wick; Cecilia Grundtman (3 December 2011). Inflammation and Atherosclerosis. Springer Science & Business Media. pp. 560–. ISBN 978-3-7091-0338-8. 
  21. ^ Armen H. Tashjian; Ehrin J. Armstrong (21 July 2011). Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. Lippincott Williams & Wilkins. pp. 523–. ISBN 978-1-4511-1805-6. 
  22. ^ Kenneth Hugdahl; René Westerhausen (2010). The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres. MIT Press. pp. 272–. ISBN 978-0-262-01413-7. 
  23. ^ Raudrant D, Rabe T (2003). "Progestogens with antiandrogenic properties". Drugs 63 (5): 463–92. doi:10.2165/00003495-200363050-00003. PMID 12600226. 
  24. ^ Fournier A, Berrino F, Riboli E, Avenel V, Clavel-Chapelon F (April 2005). "Breast cancer risk in relation to different types of hormone replacement therapy in the E3N-EPIC cohort". International Journal of Cancer. Journal International Du Cancer 114 (3): 448–54. doi:10.1002/ijc.20710. PMID 15551359. 
  25. ^ Campagnoli, Carlo; Abbà, Chiara; Ambroggio, Simona; Peris, Clementina (2005). "Pregnancy, progesterone and progestins in relation to breast cancer risk". The Journal of Steroid Biochemistry and Molecular Biology 97 (5): 441–450. doi:10.1016/j.jsbmb.2005.08.015. ISSN 0960-0760. 
  26. ^ Druckmann, René (2003). "Progestins and their effects on the breast". Maturitas 46: 59–69. doi:10.1016/j.maturitas.2003.09.020. ISSN 0378-5122. 
  27. ^ Stripp B, Taylor AA, Bartter FC, et al. (October 1975). "Effect of spironolactone on sex hormones in man". The Journal of Clinical Endocrinology and Metabolism 41 (4): 777–81. doi:10.1210/jcem-41-4-777. PMID 1176584. 
  28. ^ Pozzi AG, Ceballos NR (August 2000). "Human chorionic gonadotropin-induced spermiation in Bufo arenarum is not mediated by steroid biosynthesis". General and Comparative Endocrinology 119 (2): 164–71. doi:10.1006/gcen.2000.7509. PMID 10936036. 
  29. ^ Canosa LF, Ceballos NR (August 2001). "Effects of different steroid-biosynthesis inhibitors on the testicular steroidogenesis of the toad Bufo arenarum". Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 171 (6): 519–26. doi:10.1007/s003600100203. PMID 11585264. 
  30. ^ Boisselle A, Dionne FT, Tremblay RR (July 1979). "Interaction of spironolactone with rat skin androgen receptor". Canadian Journal of Biochemistry 57 (7): 1042–6. doi:10.1139/o79-131. PMID 487244. 
  31. ^ Tremblay RR. (May 1986). "Treatment of hirsutism with spironolactone". Clinics in Endocrinology and Metabolism 15 (2): 363–371. doi:10.1016/S0300-595X(86)80030-5. PMID 2941190. 
  32. ^ Biffignandi P, Molinatti GM. (1987). "Antiandrogens and hirsutism". Hormone Research 28 (2–4): 242–249. doi:10.1159/000180949. PMID 2969862. 
  33. ^ Loy R, Seibel MM (December 1988). "Evaluation and therapy of polycystic ovarian syndrome". Endocrinology and Metabolism Clinics of North America 17 (4): 785–813. PMID 3143568. 
  34. ^ Yamasaki K, Sawaki M, Noda S, et al. (February 2004). "Comparison of the Hershberger assay and androgen receptor binding assay of twelve chemicals". Toxicology 195 (2-3): 177–86. doi:10.1016/j.tox.2003.09.012. PMID 14751673. 
  35. ^ Kaiser E, Gruner HS (1987). "Liver structure and function during long-term treatment with cyproterone acetate". Archives of Gynecology 240 (4): 217–23. doi:10.1007/BF02134071. PMID 2955749. 
  36. ^ Willemse PH, Dikkeschei LD, Mulder NH, van der Ploeg E, Sleijfer DT, de Vries EG (March 1988). "Clinical and endocrine effects of cyproterone acetate in postmenopausal patients with advanced breast cancer". European Journal of Cancer & Clinical Oncology 24 (3): 417–21. doi:10.1016/S0277-5379(98)90011-6. PMID 2968261. 
  37. ^ Hinkel A, Berges RR, Pannek J, Schulze H, Senge T (1996). "Cyproterone acetate in the treatment of advanced prostatic cancer: retrospective analysis of liver toxicity in the long-term follow-up of 89 patients". European Urology 30 (4): 464–70. PMID 8977068. 
  38. ^ Watanabe S, Cui Y, Tanae A, et al. (September 1997). "Follow-up study of children with precocious puberty treated with cyproterone acetate. Ad hoc Committee for CPA". Journal of Epidemiology 7 (3): 173–8. doi:10.2188/jea.7.173. PMID 9337516. 
  39. ^ Migliari R, Muscas G, Murru M, Verdacchi T, De Benedetto G, De Angelis M (December 1999). "Antiandrogens: a summary review of pharmacodynamic properties and tolerability in prostate cancer therapy". Archivio Italiano Di Urologia, Andrologia 71 (5): 293–302. PMID 10673793. 
  40. ^ Laron Z, Kauli R (July 2000). "Experience with cyproterone acetate in the treatment of precocious puberty". Journal of Pediatric Endocrinology & Metabolism. 13 Suppl 1: 805–10. doi:10.1515/JPEM.2000.13.S1.805. PMID 10969925. 
  41. ^ Giordano N, Nardi P, Santacroce C, Geraci S, Gennari C (September 2001). "Acute hepatitis induced by cyproterone acetate". The Annals of Pharmacotherapy 35 (9): 1053–5. doi:10.1345/aph.10426. PMID 11573856. 
  42. ^ Lin AD, Chen KK, Lin AT, et al. (December 2003). "Antiandrogen-associated hepatotoxicity in the management of advanced prostate cancer". Journal of the Chinese Medical Association 66 (12): 735–40. PMID 15015823. 
  43. ^ Savidou I, Deutsch M, Soultati AS, Koudouras D, Kafiri G, Dourakis SP (December 2006). "Hepatotoxicity induced by cyproterone acetate: a report of three cases". World Journal of Gastroenterology 12 (46): 7551–5. PMC 4087608. PMID 17167851. 
  44. ^ Bockting W, Coleman E, De Cuypere G (Jun 2011). "Care of transsexual persons". The New England Journal of Medicine 364 (26): 2559–60; author reply 2560. doi:10.1056/NEJMcp1008161. PMID 21714669. 
  45. ^ Ho CK (Dec 2011). "Testosterone testing in adult males". The Malaysian Journal of Pathology 33 (2): 71–81. PMID 22299206. 
  46. ^ Iversen P, Melezinek I, Schmidt A (Jan 2001). "Nonsteroidal antiandrogens: a therapeutic option for patients with advanced prostate cancer who wish to retain sexual interest and function". BJU International 87 (1): 47–56. doi:10.1046/j.1464-410x.2001.00988.x. PMID 11121992. 
  47. ^ Morgante, E; Gradini, R; Realacci, M; Sale, P; D'eramo, G; Perrone, G A; Cardillo, M R; Petrangeli, E; Russo, Ma; Di Silverio, F (2001). "Effects of long-term treatment with the anti-androgen bicalutamide on human testis: an ultrastructural and morphometric study". Histopathology 38 (3): 195–201. doi:10.1046/j.1365-2559.2001.01077.x. ISSN 0309-0167. 
  48. ^ Seal, L. J.; Franklin, S.; Richards, C.; Shishkareva, A.; Sinclaire, C.; Barrett, J. (2012). "Predictive Markers for Mammoplasty and a Comparison of Side Effect Profiles in Transwomen Taking Various Hormonal Regimens". The Journal of Clinical Endocrinology & Metabolism 97 (12): 4422–4428. doi:10.1210/jc.2012-2030. ISSN 0021-972X. 
  49. ^ "Standards of Care for the Health of Transsexual, Transgender, and Gender Nonconforming People" (PDF). 7th version. World Professional Association for Transgender Health. p. 18. Archived from the original (PDF) on 2012-09-20. Retrieved 31 October 2013. 
  50. ^ Peterson's Principles of Oral and Maxillofacial Surgery. PMPH-USA. 2012. pp. 1209–. ISBN 978-1-60795-111-7. 
  51. ^
    • Henriksson P, Eriksson A, Stege R, et al. (1988). "Cardiovascular follow-up of patients with prostatic cancer treated with single-drug polyestradiol phosphate". The Prostate 13 (3): 257–61. doi:10.1002/pros.2990130308. PMID 3211807. 
    • von Schoultz B, Carlström K, Collste L, et al. (1989). "Estrogen therapy and liver function--metabolic effects of oral and parenteral administration". The Prostate 14 (4): 389–95. doi:10.1002/pros.2990140410. PMID 2664738. 
    • Asscheman H, Gooren LJ, Eklund PL. (September 1989). "Mortality and morbidity in transsexual patients with cross-gender hormone treatment". Metabolism: Clinical and Experimental 38 (9): 869–873. doi:10.1016/0026-0495(89)90233-3. PMID 2528051. 
    • Aro J, Haapiainen R, Rasi V, Rannikko S, Alfthan O (1990). "The effect of parenteral estrogen versus orchiectomy on blood coagulation and fibrinolysis in prostatic cancer patients". European Urology 17 (2): 161–5. PMID 2178941. 
    • Henriksson P, Blombäck M, Eriksson A, Stege R, Carlström K (March 1990). "Effect of parenteral oestrogen on the coagulation system in patients with prostatic carcinoma". British Journal of Urology 65 (3): 282–5. doi:10.1111/j.1464-410X.1990.tb14728.x. PMID 2110842. 
    • Aro J (1991). "Cardiovascular and all-cause mortality in prostatic cancer patients treated with estrogens or orchiectomy as compared to the standard population". The Prostate 18 (2): 131–7. doi:10.1002/pros.2990180205. PMID 2006119. 
    • Henriksson P, Stege R (1991). "Cost comparison of parenteral estrogen and conventional hormonal treatment in patients with prostatic cancer". International Journal of Technology Assessment in Health Care 7 (2): 220–5. doi:10.1017/S0266462300005110. PMID 1907600. 
    • Henriksson P (Jan–Feb 1991). "Estrogen in patients with prostatic cancer. An assessment of the risks and benefits". Drug Safety 6 (1): 47–53. doi:10.2165/00002018-199106010-00005. PMID 2029353. 
    • Caine YG, Bauer KA, Barzegar S, et al. (October 1992). "Coagulation activation following estrogen administration to postmenopausal women". Thrombosis and Haemostasis 68 (4): 392–5. PMID 1333098. 
    • Stege R, Sander S (March 1993). "[Endocrine treatment of prostatic cancer. A renaissance for parenteral estrogen]". Tidsskrift for Den Norske Lægeforening (in Norwegian) 113 (7): 833–5. PMID 8480286. 
    • Stege R, Carlström K, Hedlund PO, Pousette A, von Schoultz B, Henriksson P (September 1995). "[Intramuscular depot estrogens (Estradurin) in treatment of patients with prostate carcinoma. Historical aspects, mechanism of action, results and current clinical status]". Der Urologe. Ausg. A (in German) 34 (5): 398–403. PMID 7483157. 
    • Cox RL, Crawford ED (December 1995). "Estrogens in the treatment of prostate cancer". Journal of Urology 154 (6): 1991–8. doi:10.1016/S0022-5347(01)66670-9. PMID 7500443. 
    • Henriksson P, Carlström K, Pousette A, et al. (July 1999). "Time for revival of estrogens in the treatment of advanced prostatic carcinoma? Pharmacokinetics, and endocrine and clinical effects, of a parenteral estrogen regimen". The Prostate 40 (2): 76–82. doi:10.1002/(SICI)1097-0045(19990701)40:2<76::AID-PROS2>3.0.CO;2-Q. PMID 10386467. 
    • Hedlund PO, Henriksson P (March 2000). "Parenteral estrogen versus total androgen ablation in the treatment of advanced prostate carcinoma: effects on overall survival and cardiovascular mortality. The Scandinavian Prostatic Cancer Group (SPCG)-5 Trial Study". Urology 55 (3): 328–33. doi:10.1016/S0090-4295(99)00580-4. PMID 10699602. 
    • Hedlund PO, Ala-Opas M, Brekkan E, et al. (2002). "Parenteral estrogen versus combined androgen deprivation in the treatment of metastatic prostatic cancer -- Scandinavian Prostatic Cancer Group (SPCG) Study No. 5". Scandinavian Journal of Urology and Nephrology 36 (6): 405–13. doi:10.1080/003655902762467549. PMID 12623503. 
    • Scarabin PY, Oger E, Plu-Bureau G (August 2003). "Differential association of oral and transdermal oestrogen-replacement therapy with venous thromboembolism risk". Lancet 362 (9382): 428–32. doi:10.1016/S0140-6736(03)14066-4. PMID 12927428. 
    • Straczek C, Oger E, Yon de Jonage-Canonico MB, et al. (November 2005). "Prothrombotic mutations, hormone therapy, and venous thromboembolism among postmenopausal women: impact of the route of estrogen administration". Circulation 112 (22): 3495–500. doi:10.1161/CIRCULATIONAHA.105.565556. PMID 16301339. 
    • Ockrim J, Lalani el-N, Abel P (October 2006). "Therapy Insight: parenteral estrogen treatment for prostate cancer--a new dawn for an old therapy". Nature Clinical Practice Oncology 3 (10): 552–63. doi:10.1038/ncponc0602. PMID 17019433. 
    • Basurto L, Saucedo R, Zárate A, et al. (2006). "Effect of pulsed estrogen therapy on hemostatic markers in comparison with oral estrogen regimen in postmenopausal women". Gynecologic and Obstetric Investigation 61 (2): 61–4. doi:10.1159/000088603. PMID 16192735. 
    • Hemelaar M, Rosing J, Kenemans P, Thomassen MC, Braat DD, van der Mooren MJ (July 2006). "Less effect of intranasal than oral hormone therapy on factors associated with venous thrombosis risk in healthy postmenopausal women". Arteriosclerosis, Thrombosis, and Vascular Biology 26 (7): 1660–6. doi:10.1161/01.ATV.0000224325.96659.53. PMID 16645152. 
    • Hedlund PO, Damber JE, Hagerman I, et al. (2008). "Parenteral estrogen versus combined androgen deprivation in the treatment of metastatic prostatic cancer: part 2. Final evaluation of the Scandinavian Prostatic Cancer Group (SPCG) Study No. 5". Scandinavian Journal of Urology and Nephrology 42 (3): 220–9. doi:10.1080/00365590801943274. PMID 18432528. 
    • Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY (May 2008). "Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: systematic review and meta-analysis". BMJ 336 (7655): 1227–31. doi:10.1136/bmj.39555.441944.BE. PMC 2405857. PMID 18495631. 
  52. ^ "Casodex monograph" (PDF). Retrieved 14 June 2008. 
  53. ^ Iversen P, Johansson JE, Lodding P, et al. (November 2004). "Bicalutamide (150 mg) versus placebo as immediate therapy alone or as adjuvant to therapy with curative intent for early nonmetastatic prostate cancer: 5.3-year median followup from the Scandinavian Prostate Cancer Group Study Number 6". The Journal of Urology 172 (5 Pt 1): 1871–6. doi:10.1097/01.ju.0000139719.99825.54. PMID 15540741. 
  54. ^ "Important Safety Information Regarding Casodex 150 mg". Retrieved 14 June 2008. 
  55. ^ a b c d e f g Asscheman H, Gooren LJ (1992). "Hormone Treatment in Transsexuals". Retrieved 13 June 2008. 
  56. ^ a b c Giltay EJ, Gooren LJ (August 2000). "Effects of sex steroid deprivation/administration on hair growth and skin sebum production in transsexual males and females". Journal of Clinical Endocrinology and Metabolism 85 (8): 2913–21. doi:10.1210/jc.85.8.2913. PMID 10946903. 
  57. ^ Doctors plan uterus transplants to help women with removed, damaged wombs have babies - Associated Press
  58. ^ Fageeh W, Raffa H, Jabbad H, Marzouki A (March 2002). "Transplantation of the human uterus". International Journal of Gynaecology and Obstetrics 76 (3): 245–51. doi:10.1016/S0020-7292(01)00597-5. PMID 11880127. 
  59. ^ Del Priore G, Stega J, Sieunarine K, Ungar L, Smith JR (January 2007). "Human uterus retrieval from a multi-organ donor". Obstetrics and Gynecology 109 (1): 101–4. doi:10.1097/01.AOG.0000248535.58004.2f. PMID 17197594. 
  60. ^ Nair A, Stega J, Smith JR, Del Priore G (April 2008). "Uterus transplant: evidence and ethics". Annals of the New York Academy of Sciences 1127: 83–91. doi:10.1196/annals.1434.003. PMID 18443334. 
  61. ^ Kirk, MD, Sheila (1999). Feminizing Hormonal Therapy For The Transgendered (1999 Edition). Pittsburgh, PA: Together Lifeworks. p. 38. 
  62. ^ Leach NE, Wallis NE, Lothringer LL, Olson JA (May 1971). "Corneal hydration changes during the normal menstrual cycle--a preliminary study". The Journal of Reproductive Medicine 6 (5): 201–4. PMID 5094729. 
  63. ^ Kiely PM, Carney LG, Smith G (October 1983). "Menstrual cycle variations of corneal topography and thickness". American Journal of Optometry and Physiological Optics 60 (10): 822–9. doi:10.1097/00006324-198310000-00003. PMID 6650653. 
  64. ^ Gurwood AS, Gurwood I, Gubman DT, Brzezicki LJ (January 1995). "Idiosyncratic ocular symptoms associated with the estradiol transdermal estrogen replacement patch system". Optometry and Vision Science 72 (1): 29–33. doi:10.1097/00006324-199501000-00006. PMID 7731653. 
  65. ^ Kirk, MD, Sheila (1999). Feminizing Hormonal Therapy For The Transgendered (1999 Edition). Pittsburgh, PA: Together Lifeworks. p. 56. 
  66. ^ Krenzer KL, Dana MR, Ullman MD, et al. (December 2000). "Effect of androgen deficiency on the human meibomian gland and ocular surface". The Journal of Clinical Endocrinology and Metabolism 85 (12): 4874–82. doi:10.1210/jcem.85.12.7072. PMID 11134156. 
  67. ^ Sullivan DA, Sullivan BD, Evans JE, et al. (June 2002). "Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye". Annals of the New York Academy of Sciences 966: 211–22. doi:10.1111/j.1749-6632.2002.tb04217.x. PMID 12114274. 
  68. ^ Sullivan BD, Evans JE (December 2002). "Complete androgen insensitivity syndrome: effect on human meibomian gland secretions". Archives of Ophthalmology 120 (12): 1689–1699. doi:10.1001/archopht.120.12.1689. PMID 12470144. 
  69. ^ Cermak JM, Krenzer KL, Sullivan RM, Dana MR, Sullivan DA (August 2003). "Is complete androgen insensitivity syndrome associated with alterations in the meibomian gland and ocular surface?". Cornea 22 (6): 516–21. doi:10.1097/00003226-200308000-00006. PMID 12883343. 
  70. ^ Oprea L, Tiberghien A, Creuzot-Garcher C, Baudouin C (October 2004). "Influence des hormones sur le film lacrymal" [Hormonal regulatory influence in tear film]. Journal Français D'ophtalmologie (in French) 27 (8): 933–41. doi:10.1016/S0181-5512(04)96241-9. PMID 15547478. 
  71. ^ Meikle, James. "Breast regrowth procedure trialled for mastectomy patients". Retrieved 17 January 2015. 
  72. ^ Kirk, MD, Sheila (1999). Feminizing Hormonal Therapy For The Transgendered (1999 Edition). Pittsburgh, PA: Together Lifeworks. p. 52. 
  73. ^ Harel Z, Biro FM, Kollar LM (May 1995). "Depo-Provera in adolescents: effects of early second injection or prior oral contraception". The Journal of Adolescent Health 16 (5): 379–84. doi:10.1016/S1054-139X(95)00094-9. PMID 7662688. 
  74. ^ Archer B, Irwin D, Jensen K, Johnson ME, Rorie J (1997). "Depot medroxyprogesterone. Management of side-effects commonly associated with its contraceptive use". Journal of Nurse-midwifery 42 (2): 104–11. doi:10.1016/S0091-2182(96)00135-8. PMID 9107118. 
  75. ^ Civic D, Scholes D, Ichikawa L, et al. (June 2000). "Depressive symptoms in users and non-users of depot medroxyprogesterone acetate". Contraception 61 (6): 385–90. doi:10.1016/S0010-7824(00)00122-0. PMID 10958882. 
  76. ^ Ott MA, Shew ML, Ofner S, Tu W, Fortenberry JD (August 2008). "The influence of hormonal contraception on mood and sexual interest among adolescents". Archives of Sexual Behavior 37 (4): 605–13. doi:10.1007/s10508-007-9302-0. PMC 3020653. PMID 18288601. 
  77. ^ St-André M, Stikarovska I, Gascon S (February 2012). "Clinical Case Rounds in Child and Adolescent Psychiatry: De Novo Self-Mutilation and Depressive Symptoms in a 17-year-old Adolescent Girl Receiving Depot-Medroxyprogesterone Acetate". Journal of the Canadian Academy of Child and Adolescent Psychiatry 21 (1): 59–62. PMC 3269252. PMID 22299016. 
  78. ^ Gupta ML, Tandon P, Barthwal JP, Gupta TK, Bhargava KP (November 1983). "Role of catecholamines in the central actions of medroxyprogesterone acetate". Experimental and Clinical Endocrinology 82 (3): 380–3. doi:10.1055/s-0029-1210303. PMID 6228435. 
  79. ^ Hulshoff, Cohen-Kettenis; et al. (July 2006). "Changing your sex changes your brain: influences of testosterone and estrogen on adult human brain structure". European Journal of Endocrinology 155 (Suppl 1): 107–114. doi:10.1530/eje.1.02248. ISSN 0804-4643. 
  80. ^ Hembree, Wylie, C; Cohen-Kettenis, Peggy; Delemarre-van de Waal, Henriette; Gooren, Louis; Meyer III, Walter; Spack, Norman; Tangpricha, Vin; Montori, Victor (September 2009). "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline" (PDF). Clinical Endocrinology & Metabolism 94 (9): 18. doi:10.1210/jc.2009-0345. PMID 19509099. Retrieved 2014-06-07. 
  81. ^ Wylie, Kevan; Barrett, James; Besser, Mike; Bouman, Walter; Brain, Caroline; Bridgman, Michelle; Clayton, Angela; Green, Richard; Hamilton, Mark; Hines, Melissa; Ivbijaro, Gabriel; Khoosal, Deenesh; Lawrence, Alex; Lenihan, Penny; Ivbijaro, Del; Ralph, David; Reed, Terry; Stevens, John; Terry, Tim; Thom, Ben; Thornton, Jane; Walsh, Dominic; Ward, David (2014). "Good Practice Guidelines for the Assessment and Treatment of Adults with Gender Dysphoria" (PDF). Sexual and Relationship Therapy (Taylor & Francis) 29: 35. 
  82. ^ Hembree, Wylie, C; Cohen-Kettenis, Peggy; Delemarre-van de Waal, Henriette; Gooren, Louis; Meyer III, Walter; Spack, Norman; Tangpricha, Vin; Montori, Victor (September 2009). "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline" (PDF). Clinical Endocrinology & Metabolism 94 (9): 22. doi:10.1210/jc.2009-0345. PMID 19509099. Retrieved 2014-06-07. 
  83. ^ Hembree, Wylie, C; Cohen-Kettenis, Peggy; Delemarre-van de Waal, Henriette; Gooren, Louis; Meyer III, Walter; Spack, Norman; Tangpricha, Vin; Montori, Victor (September 2009). "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline" (PDF). Clinical Endocrinology & Metabolism 94 (9): 22–23. doi:10.1210/jc.2009-0345. PMID 19509099. Retrieved 2014-06-07. 

External links[edit]