IEEE 802.21

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The IEEE 802.21 refers to Media Independent Handoff (MIH) and is an IEEE standard published in 2008. The standard supports algorithms enabling seamless handover between wired and wireless networks of the same type as well as handover between different wired and wireless network types also called Media independent handover (MIH) or vertical handover. Vertical handover was first introduced by Mark Stemn and Randy Katz at U C Berkeley.[1] The standard provides information to allow handing over to and from wired 802.3 network to wireless 802.11, 802.15, 802.16, 3GPP and 3GPP2 networks through different handover mechanisms.

The IEEE 802.21 working group started work in March 2004. More than 30 companies have joined the working group. The group produced a first draft of the standard including the protocol definition in May 2005. The standard was published January 2009.

Reasons for 802.21[edit]

Cellular networks and 802.11 networks employ handover mechanisms for handover within the same network type (aka horizontal handover). Mobile IP provides handover mechanisms for handover across subnets of different types of networks, but can be slow in the process. Current 802 standards do not support handover between different types of networks. They also do not provide triggers or other services to accelerate mobile IP based handovers. Moreover, existing 802 standards provide mechanisms for detecting and selecting network access points, but do not allow for detection and selection of network access points in a way that is independent of the network type.

Some of the expectations[edit]

Implementation and Issues[edit]

Implementation is still in progress. Current technologies such as 802.11 that accomplish handover use software to accomplish handovers and suggest that software will also be the way that handover will be implemented by 802.21. The use of software as a means to implement 802.21 should not cause large increases in the cost of networking devices. An open source software implementation is provided by ODTONE.[citation needed]

Crossing different administrative connectivity domains will require agreements among different network operators. Currently, such agreements are still not in place. In smart phones today, a user can manually select to use WiFi or cellular LTE, but the connections are not automatically maintained should a disconnection of one network occurs.

Hence, seamless handovers across different wire/wireless networks are still not available today.

Examples[edit]

  • A user should be able to unplug from an 802.3 network and get handed off to an 802.11 network.
  • A cellular phone user in the midst of a call should be able to enter an 802.11 network hotspot and be seamlessly handed off from a GSM network to the 802.11 network and back again when leaving the hotspot.

Other similar technologies[edit]

Unlicensed Mobile Access (UMA)[citation needed] technology is basically a mobile-centric version of 802.21. UMA is said to provide roaming and handover between GSM, UMTS, Bluetooth and 802.11 networks. Since June 19, 2005, UMA is a part of the ETSI 3GPP standardization process under the GAN (Generic Access Network) Group.

The Evolved Packet Core (EPC) architecture for Next Generation Mobile Networks (3GPP Rel.8 and newer) provides the Access Network Discovery and Selection Function element (ANDSF)[citation needed] (see 3GPP TS 23.402 and 3GPP TS 24.312). Its S14 interface provides the communication path between the Core Network and the User Endpoint device on which to exchange discovery information and inter-system mobility policies, enabling as such a network suggested reselection of access networks.

See also[edit]

References[edit]

External links[edit]