IFT140

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
IFT140
Identifiers
Aliases IFT140, MZSDS, SRTD9, WDTC2, c305C8.4, c380F5.1, gs114, intraflagellar transport 140, RP80
External IDs MGI: 2146906 HomoloGene: 40979 GeneCards: IFT140
Gene location (Human)
Chromosome 16 (human)
Chr. Chromosome 16 (human)[1]
Chromosome 16 (human)
Genomic location for IFT140
Genomic location for IFT140
Band 16p13.3 Start 1,510,427 bp[1]
End 1,612,110 bp[1]
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014714

NM_134126

RefSeq (protein)

NP_055529

NP_598887

Location (UCSC) Chr 16: 1.51 – 1.61 Mb Chr 17: 25.02 – 25.1 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

IFT140, Intraflagellar transport 140 homolog, is a protein that in humans is encoded by the IFT140 gene.

Clinical significance[edit]

Mutations in this gene have been associated to cases of skeletal ciliopathy.[5]

Model organisms[edit]

Model organisms have been used in the study of IFT140 function. A conditional knockout mouse line called Ift140tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[6] Male and female animals underwent a standardized phenotypic screen[7] to determine the effects of deletion.[8][9][10][11] Additional screens performed: - In-depth immunological phenotyping[12]

References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000187535 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024169 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". 
  4. ^ "Mouse PubMed Reference:". 
  5. ^ Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanović R, Peco-Antić A, Mache C, Hurles ME, Joksić I, Guć-Šćekić M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C (May 2013). "Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease". Human Mutation. 34 (5): 714–24. doi:10.1002/humu.22294. PMC 4226634Freely accessible. PMID 23418020. 
  6. ^ Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  7. ^ a b "International Mouse Phenotyping Consortium". 
  8. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750. 
  9. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  10. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  11. ^ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207Freely accessible. PMID 23870131. 
  12. ^ a b "Infection and Immunity Immunophenotyping (3i) Consortium".