Immunophysics

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Immunophysics is a novel interdisciplinary research field using immunological, biological, physical and chemical approaches to elucidate and modify immune-mediated mechanisms and to expand our knowledge on the pathomechanisms of chronic immune-mediated diseases such as arthritis, inflammatory bowel disease, asthma and chronic infections.

Background[edit]

Immune reactions are tightly regulated and usually self-limited.[1][2] Dysregulation can result in chronic inflammatory diseases (immunochronicity). In addition to biochemical molecular mechanisms, physical factors influence the immune system. Such components include:

  • Microenvironmental factors like tonicity, pH, oxygen pressure and the redox status of immune cells[3][4][5][6][7][8][9]
  • Mechanical factors, such as tissue pressure, cellular stiffness and cell motility[10][11]
  • Cell membrane physics such as membrane composition and particles[12]

The research field of immunophysics aims to investigate the influence of these physicochemical parameters on the function of the immune system in health and disease.

Methods[edit]

Immunophysical techniques include nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), dual-energy computed tomography,[13] fluorescence-lifetime imaging microscopy, multispectral optoacoustic tomography (MSOT), high-throughput microfluidic cytometry,[14] interferometric scattering microscopy (iSCAT) and cryogenic optical localization in 3D (COLD).

Applications[edit]

Immunophysical research is considered to open new perspectives for the investigation of the pathomechanisms of immune-mediated inflammatory diseases, help to develop novel detection methods and diagnostic tools in these diseases and advance the treatment possibilities of such diseases. 

See also[edit]

Immune system, inflammation, arthritis, inflammatory bowel disease, asthma

External links[edit]

References[edit]

  1. ^ Murphy and Weaver, Kenneth and Casey (2016). Janeway’s Immunobiology textbook. Taylor & Francis Ltd. ISBN 978-0-8153-4551-0. 
  2. ^ Nathan, Carl. "Points of control in inflammation". Nature. 420 (6917): 846–852. doi:10.1038/nature01320. 
  3. ^ Kellum, John A.; Song, Mingchen; Li, Jinyou (2004-01-01). "Science review: Extracellular acidosis and the immune response: clinical and physiologic implications". Critical Care. 8: 331. ISSN 1364-8535. PMC 1065014Freely accessible. PMID 15469594. doi:10.1186/cc2900. 
  4. ^ Bogdan, Christian (2015-03-01). "Nitric oxide synthase in innate and adaptive immunity: an update". Trends in Immunology. 36 (3): 161–178. ISSN 1471-4906. doi:10.1016/j.it.2015.01.003. 
  5. ^ Nathan, Carl; Cunningham-Bussel, Amy. "Beyond oxidative stress: an immunologist's guide to reactive oxygen species". Nature Reviews Immunology. 13 (5): 349–361. PMC 4250048Freely accessible. PMID 23618831. doi:10.1038/nri3423. 
  6. ^ Machnik, Agnes; Neuhofer, Wolfgang; Jantsch, Jonathan; Dahlmann, Anke; Tammela, Tuomas; Machura, Katharina; Park, Joon-Keun; Beck, Franz-Xaver; Müller, Dominik N. "Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism". Nature Medicine. 15 (5): 545–552. doi:10.1038/nm.1960. 
  7. ^ Jantsch, Jonathan; Schatz, Valentin; Friedrich, Diana; Schröder, Agnes; Kopp, Christoph; Siegert, Isabel; Maronna, Andreas; Wendelborn, David; Linz, Peter (2015-03-03). "Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense". Cell Metabolism. 21 (3): 493–501. ISSN 1550-4131. PMC 4350016Freely accessible. PMID 25738463. doi:10.1016/j.cmet.2015.02.003. 
  8. ^ Kleinewietfeld, Markus; Manzel, Arndt; Titze, Jens; Kvakan, Heda; Yosef, Nir; Linker, Ralf A.; Muller, Dominik N.; Hafler, David A. "Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells". Nature. 496 (7446): 518–522. PMC 3746493Freely accessible. PMID 23467095. doi:10.1038/nature11868. 
  9. ^ Shapiro L and Dinarello CA (1995). "Osmotic regulation of cytokine synthesis in vitro.". Proc Natl Acad Sci U S A. 92 (26): 12230–4. 
  10. ^ Fay, Meredith E.; Myers, David R.; Kumar, Amit; Turbyfield, Cory T.; Byler, Rebecca; Crawford, Kaci; Mannino, Robert G.; Laohapant, Alvin; Tyburski, Erika A. (2016-02-23). "Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts". Proceedings of the National Academy of Sciences. 113 (8): 1987–1992. ISSN 0027-8424. PMC 4776450Freely accessible. PMID 26858400. doi:10.1073/pnas.1508920113. 
  11. ^ Riesner, Katarina; Shi, Yu; Jacobi, Angela; Kräter, Martin; Kalupa, Martina; McGearey, Aleixandria; Mertlitz, Sarah; Cordes, Steffen; Schrezenmeier, Jens-Florian (2017-04-06). "Initiation of acute graft-versus-host disease by angiogenesis". Blood. 129 (14): 2021–2032. ISSN 0006-4971. PMID 28096092. doi:10.1182/blood-2016-08-736314. 
  12. ^ Muñoz, Luis E.; Bilyy, Rostyslav; Biermann, Mona H. C.; Kienhöfer, Deborah; Maueröder, Christian; Hahn, Jonas; Brauner, Jan M.; Weidner, Daniela; Chen, Jin (2016-10-04). "Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation". Proceedings of the National Academy of Sciences. 113 (40): E5856–E5865. ISSN 0027-8424. PMC 5056044Freely accessible. PMID 27647892. doi:10.1073/pnas.1602230113. 
  13. ^ McCollough, Cynthia H.; Leng, Shuai; Yu, Lifeng; Fletcher, Joel G. (2015-08-24). "Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications". Radiology. 276 (3): 637–653. ISSN 0033-8419. PMC 4557396Freely accessible. PMID 26302388. doi:10.1148/radiol.2015142631. 
  14. ^ Wlodkowic, Donald; Darzynkiewicz, Zbigniew (2011-01-01). Zbigniew Darzynkiewicz, Elena Holden, Alberto Orfao, William Telford and Donald Wlodkowic, ed. Methods in Cell Biology. Recent Advances in Cytometry, Part A. Instrumentation, Methods. 102. Academic Press. pp. 105–125. doi:10.1016/b978-0-12-374912-3.00005-5.