From Wikipedia, the free encyclopedia
Jump to: navigation, search

Immunophysics is a novel interdisciplinary research field using immunological, biological, physical and chemical approaches to elucidate and modify immune-mediated mechanisms and to expand our knowledge on the pathomechanisms of chronic immune-mediated diseases such as arthritis, inflammatory bowel disease, asthma and chronic infections.


Immune reactions are tightly regulated and usually self-limited.[1][2] Dysregulation can result in chronic inflammatory diseases (immunochronicity). In addition to biochemical molecular mechanisms, physical factors influence the immune system. Such components include:

  • Microenvironmental factors like tonicity, pH, oxygen pressure and the redox status of immune cells[3][4][5][6][7][8][9]
  • Mechanical factors, such as tissue pressure, cellular stiffness and cell motility[10][11]
  • Cell membrane physics such as membrane composition and particles[12]

The research field of immunophysics aims to investigate the influence of these physicochemical parameters on the function of the immune system in health and disease.


Immunophysical techniques include nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), dual-energy computed tomography,[13] fluorescence-lifetime imaging microscopy, multispectral optoacoustic tomography (MSOT), high-throughput microfluidic cytometry,[14] interferometric scattering microscopy (iSCAT) and cryogenic optical localization in 3D (COLD).


Immunophysical research is considered to open new perspectives for the investigation of the pathomechanisms of immune-mediated inflammatory diseases, help to develop novel detection methods and diagnostic tools in these diseases and advance the treatment possibilities of such diseases. 

See also[edit]

Immune system, inflammation, arthritis, inflammatory bowel disease, asthma

External links[edit]


  1. ^ Murphy and Weaver, Kenneth and Casey (2016). Janeway’s Immunobiology textbook. Taylor & Francis Ltd. ISBN 978-0-8153-4551-0. 
  2. ^ Nathan, Carl. "Points of control in inflammation". Nature. 420 (6917): 846–852. doi:10.1038/nature01320. 
  3. ^ Kellum, John A.; Song, Mingchen; Li, Jinyou (2004-01-01). "Science review: Extracellular acidosis and the immune response: clinical and physiologic implications". Critical Care. 8: 331. ISSN 1364-8535. PMC 1065014Freely accessible. PMID 15469594. doi:10.1186/cc2900. 
  4. ^ Bogdan, Christian (2015-03-01). "Nitric oxide synthase in innate and adaptive immunity: an update". Trends in Immunology. 36 (3): 161–178. ISSN 1471-4906. doi:10.1016/ 
  5. ^ Nathan, Carl; Cunningham-Bussel, Amy. "Beyond oxidative stress: an immunologist's guide to reactive oxygen species". Nature Reviews Immunology. 13 (5): 349–361. PMC 4250048Freely accessible. PMID 23618831. doi:10.1038/nri3423. 
  6. ^ Machnik, Agnes; Neuhofer, Wolfgang; Jantsch, Jonathan; Dahlmann, Anke; Tammela, Tuomas; Machura, Katharina; Park, Joon-Keun; Beck, Franz-Xaver; Müller, Dominik N. "Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism". Nature Medicine. 15 (5): 545–552. doi:10.1038/nm.1960. 
  7. ^ Jantsch, Jonathan; Schatz, Valentin; Friedrich, Diana; Schröder, Agnes; Kopp, Christoph; Siegert, Isabel; Maronna, Andreas; Wendelborn, David; Linz, Peter (2015-03-03). "Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense". Cell Metabolism. 21 (3): 493–501. ISSN 1550-4131. PMC 4350016Freely accessible. PMID 25738463. doi:10.1016/j.cmet.2015.02.003. 
  8. ^ Kleinewietfeld, Markus; Manzel, Arndt; Titze, Jens; Kvakan, Heda; Yosef, Nir; Linker, Ralf A.; Muller, Dominik N.; Hafler, David A. "Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells". Nature. 496 (7446): 518–522. PMC 3746493Freely accessible. PMID 23467095. doi:10.1038/nature11868. 
  9. ^ Shapiro L and Dinarello CA (1995). "Osmotic regulation of cytokine synthesis in vitro.". Proc Natl Acad Sci U S A. 92 (26): 12230–4. 
  10. ^ Fay, Meredith E.; Myers, David R.; Kumar, Amit; Turbyfield, Cory T.; Byler, Rebecca; Crawford, Kaci; Mannino, Robert G.; Laohapant, Alvin; Tyburski, Erika A. (2016-02-23). "Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts". Proceedings of the National Academy of Sciences. 113 (8): 1987–1992. ISSN 0027-8424. PMC 4776450Freely accessible. PMID 26858400. doi:10.1073/pnas.1508920113. 
  11. ^ Riesner, Katarina; Shi, Yu; Jacobi, Angela; Kräter, Martin; Kalupa, Martina; McGearey, Aleixandria; Mertlitz, Sarah; Cordes, Steffen; Schrezenmeier, Jens-Florian (2017-04-06). "Initiation of acute graft-versus-host disease by angiogenesis". Blood. 129 (14): 2021–2032. ISSN 0006-4971. PMID 28096092. doi:10.1182/blood-2016-08-736314. 
  12. ^ Muñoz, Luis E.; Bilyy, Rostyslav; Biermann, Mona H. C.; Kienhöfer, Deborah; Maueröder, Christian; Hahn, Jonas; Brauner, Jan M.; Weidner, Daniela; Chen, Jin (2016-10-04). "Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation". Proceedings of the National Academy of Sciences. 113 (40): E5856–E5865. ISSN 0027-8424. PMC 5056044Freely accessible. PMID 27647892. doi:10.1073/pnas.1602230113. 
  13. ^ McCollough, Cynthia H.; Leng, Shuai; Yu, Lifeng; Fletcher, Joel G. (2015-08-24). "Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications". Radiology. 276 (3): 637–653. ISSN 0033-8419. PMC 4557396Freely accessible. PMID 26302388. doi:10.1148/radiol.2015142631. 
  14. ^ Wlodkowic, Donald; Darzynkiewicz, Zbigniew (2011-01-01). Zbigniew Darzynkiewicz, Elena Holden, Alberto Orfao, William Telford and Donald Wlodkowic, ed. Methods in Cell Biology. Recent Advances in Cytometry, Part A. Instrumentation, Methods. 102. Academic Press. pp. 105–125. doi:10.1016/b978-0-12-374912-3.00005-5.