# Indefinite product

In mathematics, the indefinite product operator is the inverse operator of ${\displaystyle Q(f(x))={\frac {f(x+1)}{f(x)}}}$. It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi. Some authors use term discrete multiplicative integration[1]

Thus

${\displaystyle Q(\prod _{x}f(x))=f(x)\,.}$

More explicitly, if ${\displaystyle \prod _{x}f(x)=F(x)}$, then

${\displaystyle {\frac {F(x+1)}{F(x)}}=f(x)\,.}$

If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.

## Period rule

If ${\displaystyle T}$ is a period of function ${\displaystyle f(x)}$ then

${\displaystyle \prod _{x}f(Tx)=Cf(Tx)^{x-1}}$

## Connection to indefinite sum

Indefinite product can be expressed in terms of indefinite sum:

${\displaystyle \prod _{x}f(x)=\exp \left(\sum _{x}\ln f(x)\right)}$

## Alternative usage

Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.[2] e.g.

${\displaystyle \prod _{k=1}^{n}f(k)}$.

## Rules

${\displaystyle \prod _{x}f(x)g(x)=\prod _{x}f(x)\prod _{x}g(x)}$
${\displaystyle \prod _{x}f(x)^{a}=\left(\prod _{x}f(x)\right)^{a}}$
${\displaystyle \prod _{x}a^{f(x)}=a^{\sum _{x}f(x)}}$

## List of indefinite products

This is a list of indefinite products ${\displaystyle \prod _{x}f(x)}$. Not all functions have an indefinite product which can be expressed in elementary functions.

${\displaystyle \prod _{x}a=Ca^{x}}$
${\displaystyle \prod _{x}x=C\,\Gamma (x)}$
${\displaystyle \prod _{x}{\frac {x+1}{x}}=Cx}$
${\displaystyle \prod _{x}{\frac {x+a}{x}}={\frac {C\,\Gamma (x+a)}{\Gamma (x)}}}$
${\displaystyle \prod _{x}x^{a}=C\,\Gamma (x)^{a}}$
${\displaystyle \prod _{x}ax=Ca^{x}\Gamma (x)}$
${\displaystyle \prod _{x}a^{x}=Ca^{{\frac {x}{2}}(x-1)}}$
${\displaystyle \prod _{x}a^{\frac {1}{x}}=Ca^{\frac {\Gamma '(x)}{\Gamma (x)}}}$
${\displaystyle \prod _{x}x^{x}=C\,e^{\zeta ^{\prime }(-1,x)-\zeta ^{\prime }(-1)}=C\,e^{\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln(2\pi )}=C\,\operatorname {K} (x)}$
(see K-function)
${\displaystyle \prod _{x}\Gamma (x)={\frac {C\,\Gamma (x)^{x-1}}{\operatorname {K} (x)}}=C\,\Gamma (x)^{x-1}e^{{\frac {z}{2}}\ln(2\pi )-{\frac {z^{2}-z}{2}}-\psi ^{(-2)}(z)}=C\,\operatorname {G} (x)}$
(see Barnes G-function)
${\displaystyle \prod _{x}\operatorname {sexp} _{a}(x)={\frac {C\,(\operatorname {sexp} _{a}(x))'}{\operatorname {sexp} _{a}(x)(\ln a)^{x}}}}$
(see super-exponential function)
${\displaystyle \prod _{x}x+a=C\,\Gamma (x+a)}$
${\displaystyle \prod _{x}ax+b=C\,a^{x}\Gamma \left(x+{\frac {b}{a}}\right)}$
${\displaystyle \prod _{x}ax^{2}+bx=C\,a^{x}\Gamma (x)\Gamma \left(x+{\frac {b}{a}}\right)}$
${\displaystyle \prod _{x}x^{2}+1=C\,\Gamma (x-i)\Gamma (x+i)}$
${\displaystyle \prod _{x}x+{\frac {1}{x}}={\frac {C\,\Gamma (x-i)\Gamma (x+i)}{\Gamma (x)}}}$
${\displaystyle \prod _{x}\csc x\sin(x+1)=C\sin x}$
${\displaystyle \prod _{x}\sec x\cos(x+1)=C\cos x}$
${\displaystyle \prod _{x}\cot x\tan(x+1)=C\tan x}$
${\displaystyle \prod _{x}\tan x\cot(x+1)=C\cot x}$