Integer square root

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In number theory, the integer square root (isqrt) of a positive integer n is the positive integer m which is the greatest integer less than or equal to the square root of n,

\mbox{isqrt}( n ) = \lfloor \sqrt n \rfloor.

For example, \mbox{isqrt}(27) = 5 because 5\cdot 5=25 \le 27 and 6\cdot 6=36 > 27.


One way of calculating \sqrt{n} and \mbox{isqrt}( n ) is to use Newton's method to find a solution for the equation x^{2} - n = 0, giving the iterative formula

{x}_{k+1} = \frac{1}{2}\left(x_k + \frac{ n }{x_k}\right), \quad k \ge 0, \quad x_0 > 0.

The sequence \{ x_k \} converges quadratically to \sqrt{n} as k\to \infty. It can be proven that if x_{0} = n is chosen as the initial guess, one can stop as soon as

| x_{k+1}-x_{k}| < 1

to ensure that \lfloor x_{k+1} \rfloor=\lfloor \sqrt n \rfloor.

Using only integer division[edit]

For computing \lfloor \sqrt n \rfloor for very large integers n, one can use the quotient of Euclidean division for both of the division operations. This has the advantage of only using integers for each intermediate value, thus making the use of floating point representations of large numbers unnecessary. It is equivalent to using the iterative formula

{x}_{k+1} = \left\lfloor \frac{1}{2}\left(x_k + \left\lfloor \frac{ n }{x_k} \right\rfloor \right) \right\rfloor, \quad k \ge 0, \quad x_0 > 0, \quad x_0 \in \mathbb{Z}.

By using the fact that

\left\lfloor \frac{1}{2}\left(x_k + \left\lfloor \frac{ n }{x_k} \right\rfloor \right) \right\rfloor = \left\lfloor \frac{1}{2}\left(x_k + \frac{ n }{x_k} \right) \right\rfloor,

one can show that this will reach \lfloor \sqrt n \rfloor within a finite number of iterations.

However, \lfloor \sqrt n \rfloor is not necessarily a fixed point of the above iterative formula. Indeed, it can be shown that \lfloor \sqrt n \rfloor is a fixed point if and only if n + 1 is not a perfect square. If n + 1 is a perfect square, the sequence ends up in a period-two cycle between \lfloor \sqrt n \rfloor and \lfloor \sqrt n \rfloor + 1 instead of converging.

Domain of computation[edit]

Although \sqrt{n} is irrational for many n, the sequence \{ x_k \} contains only rational terms when  x_0 is rational. Thus, with this method it is unnecessary to exit the field of rational numbers in order to calculate \mbox{isqrt}( n ), a fact which has some theoretical advantages.

Stopping criterion[edit]

One can prove that c=1 is the largest possible number for which the stopping criterion

|x_{k+1} - x_{k}| < c\

ensures \lfloor x_{k+1} \rfloor=\lfloor \sqrt n \rfloor in the algorithm above.

In implementations which use number formats that cannot represent all rational numbers exactly (for example, floating point), a stopping constant less than one should be used to protect against roundoff errors.

See also[edit]

External links[edit]