Jump to content

Interaction-free measurement

From Wikipedia, the free encyclopedia

In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position, presence, or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment,[1] the Elitzur–Vaidman bomb-testing problem,[2] and certain double-cavity optical systems, such as Hardy's paradox.

In Quantum Computation such measurements are referred to as Counterfactual Quantum Computation,[3] an idea introduced by physicists Graeme Mitchinson and Richard Jozsa. Examples include Keith Bowden's Counterfactual Mirror Array[4] describing a digital computer that could be counterfactually interrogated to calculate whether a light beam would fail to pass through a maze.[5]

Initially proposed as thought experiments, interaction-free measurements have been experimentally demonstrated in various configurations.[6][7][8]

Interaction-free measurements have also been proposed as a way to reduce sample damage in electron microscopy.[9][10]

Counterfactual quantum communication[edit]

In 2012 the idea of counterfactual quantum communication has been proposed and demonstrated.[11] Its first achievement was reported in 2017. According to contemporary conceptions of counterfactual quantum communication, information can thereby be exchanged without any physical particle / matter / energy being transferred between the parties, without quantum teleportation and without the information being the absence of a signal.[12] In 2020 research suggested that this is based on some form of relation between the properties of modular angular momentum with massless current of modular angular momentum current crossing the "transmission channel" with their interpretation's explanation not being based on "spooky action at a distance" but properties of a particle being able to "travel locally through regions from which the particle itself is excluded".[13][14][15]

See also[edit]


  1. ^ Renninger, M. (1953). "Zum Wellen-Korpuskel-Dualismus". Zeitschrift für Physik (in German). 136 (3). Springer Science and Business Media LLC: 251–261. doi:10.1007/bf01325679. ISSN 1434-6001. S2CID 123122734.
  2. ^ Elitzur, Avshalom C.; Vaidman, Lev (1993-07-01). "Quantum mechanical interaction-free measurements". Foundations of Physics. 23 (7): 987–997. arXiv:hep-th/9305002. Bibcode:1993FoPh...23..987E. CiteSeerX doi:10.1007/BF00736012. ISSN 0015-9018. S2CID 18707734.
  3. ^ Mitchison, Graeme; Jozsa, Richard (May 8, 2001). "Counterfactual computation". Proceedings of the Royal Society of London A. 457 (2009): 1175–1193. arXiv:quant-ph/9907007. Bibcode:2001RSPSA.457.1175M. CiteSeerX doi:10.1098/rspa.2000.0714. S2CID 16208575.
  4. ^ Bowden, Keith G, "Classical Computation can be Counterfactual", in Aspects I, Proc ANPA19, Cambridge 1997 (published May 1999), ISBN 0-9526215-3-3
  5. ^ Bowden, Keith (1997-03-15). "Can Schrodinger's Cat Collapse the Wavefunction?". Archived from the original on 2007-10-16. Retrieved 2007-12-08.
  6. ^ Kwiat, Paul; Weinfurter, Harald; Herzog, Thomas; Zeilinger, Anton; Kasevich, Mark A. (1995-06-12). "Interaction-Free Measurement". Physical Review Letters. 74 (24): 4763–4766. Bibcode:1995PhRvL..74.4763K. CiteSeerX doi:10.1103/PhysRevLett.74.4763. PMID 10058593.
  7. ^ White, Andrew G. (1998). ""Interaction-free" imaging". Physical Review A. 58 (1): 605–613. arXiv:quant-ph/9803060. Bibcode:1998PhRvA..58..605W. doi:10.1103/PhysRevA.58.605. S2CID 125768139.
  8. ^ Tsegaye, T.; Goobar, E.; Karlsson, A.; Björk, G.; Loh, M. Y.; Lim, K. H. (1998-05-01). "Efficient interaction-free measurements in a high-finesse interferometer". Physical Review A. 57 (5): 3987–3990. Bibcode:1998PhRvA..57.3987T. doi:10.1103/PhysRevA.57.3987.
  9. ^ Putnam, William P. (2009). "Noninvasive electron microscopy with interaction-free quantum measurements". Physical Review A. 80 (4): 040902. Bibcode:2009PhRvA..80d0902P. doi:10.1103/PhysRevA.80.040902. hdl:1721.1/52312.
  10. ^ Kruit, P.; Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R.; Hammer, J.; Thomas, S.; Weber, P.; Klopfer, B. (May 2016). "Designs for a quantum electron microscope". Ultramicroscopy. 164: 31–45. arXiv:1510.05946. doi:10.1016/j.ultramic.2016.03.004. ISSN 0304-3991. PMID 26998703. S2CID 22658047.
  11. ^ Liu, Yang; Ju, Lei; Liang, Xiao-Lei; Tang, Shi-Biao; Tu, Guo-Liang Shen; et al. (2012-07-19). "Experimental Demonstration of Counterfactual Quantum Communication". Physical Review Letters. 109 (3). American Physical Society (APS): 030501. arXiv:1107.5754. Bibcode:2012PhRvL.109c0501L. doi:10.1103/physrevlett.109.030501. ISSN 0031-9007. PMID 22861830. S2CID 19114400.
  12. ^ "Scientists Achieve Direct Counterfactual Quantum Communication For The First Time". Futurism. Retrieved 16 January 2021.
  13. ^ "Elementary particles part ways with their properties". phys.org. Retrieved 16 January 2021.
  14. ^ McRae, Mike. "In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin". ScienceAlert. Retrieved 16 January 2021.
  15. ^ Aharonov, Yakir; Rohrlich, Daniel (21 December 2020). "What Is Nonlocal in Counterfactual Quantum Communication?". Physical Review Letters. 125 (26): 260401. arXiv:2011.11667. Bibcode:2020PhRvL.125z0401A. doi:10.1103/PhysRevLett.125.260401. PMID 33449741. S2CID 145994494. Retrieved 16 January 2021. Available on arXiv under CC BY 4.0.


  1. Renninger, M. (1960). "Messungen ohne Störung des Meßobjekts" [Observations without disturbing the object]. Zeitschrift für Physik (in German). 158 (4). Springer Science and Business Media LLC: 417–421. Bibcode:1960ZPhy..158..417R. doi:10.1007/bf01327019. ISSN 1434-6001. S2CID 123027469.
  2. Renninger, M. (1953). "Zum Wellen-Korpuskel-Dualismus". Zeitschrift für Physik (in German). 136 (3). Springer Science and Business Media LLC: 251–261. Bibcode:1953ZPhy..136..251R. doi:10.1007/bf01325679. ISSN 1434-6001. S2CID 123122734.
  3. Louis de Broglie, The Current Interpretation of Wave Mechanics, (1964) Elsevier, Amsterdam. (Provides discussion of the Renninger experiment.)
  4. Dicke, R. H. (1981). "Interaction‐free quantum measurements: A paradox?". American Journal of Physics. 49 (10). American Association of Physics Teachers (AAPT): 925–930. Bibcode:1981AmJPh..49..925D. doi:10.1119/1.12592. ISSN 0002-9505. (Provides a recent discussion of the Renninger experiment).
  5. Cramer, John G. (1986-07-01). "The transactional interpretation of quantum mechanics". Reviews of Modern Physics. 58 (3). American Physical Society (APS): 647–687. Bibcode:1986RvMP...58..647C. doi:10.1103/revmodphys.58.647. ISSN 0034-6861. Archived from the original on 2005-12-20. (Section 4.1 reviews Renninger's experiment).
  6. Paul G. Kwiat, The Tao of Quantum Interrogation, (2001).
  7. Sean M. Carroll, Quantum Interrogation Archived 2007-02-03 at the Wayback Machine, (2006).

External links[edit]