Interaction-free measurement

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position, presence, or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment, the Elitzur–Vaidman bomb-testing problem [1], and certain double-cavity optical systems, such as Hardy's paradox.

Initially proposed as thought experiments, interaction-free measurements have been experimentally demonstrated in various configurations [2][3][4].

Interaction-free measurements have also been proposed as a way to reduce sample damage in electron microscopy [5][6].

See also[edit]

References[edit]

  1. Mauritius Renninger, Messungen ohne Storung des Messobjekts (Observations without disturbing the object), (1960) Zeitschrift für Physik, 158 pp 417-421.
  2. Mauritius Renninger, (1953) Zeitschrift für Physik, 136 p. 251
  3. Louis de Broglie, The Current Interpretation of Wave Mechanics, (1964) Elsevier, Amsterdam. (Provides discussion of the Renninger experiment.)
  4. Robert H. Dicke, Interaction-Free Quantum Measurements, A paradox?, American J. Physics 1981; 49(10): 925-930. (Provides a recent discussion of the Renninger experiment).
  5. John G. Cramer, "The Transactional Interpretation of Quantum Mechanics", (1986) Reviews of Modern Physics, 58, pp.647-688. (Section 4.1 reviews Renninger's experiment).
  6. Avshalom C. Elitzur and Lev Vaidman, "Quantum mechanical interaction-free measurements". Foundations of Physics 23 (1993), 987-97.
  7. Roger Penrose, (2004). The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London, ISBN 0-679-45443-8.
  8. Andrew G. White, Jay R. Mitchell, Olaf Nairz, and Paul G. Kwiat, "'Interaction-free imaging," Physical Review A 58, (1998) 605.
  9. Paul G. Kwiat, Harald Weinfurter (de), Thomas Herzog, Anton Zeilinger, and Mark A. Kasevich, "Interaction-free measurement," Physical Review Letters 74, (1995) 4763.
  10. Paul G. Kwiat, The Tao of Quantum Interrogation, (2001).
  11. Sean M. Carroll, Quantum Interrogation, (2006).
  12. G. S. Paraoanu, "Interaction-Free Measurements with Superconducting Qubits", Physical Review Letters 97, (2006) 180406.
Specific
  1. ^ Elitzur, Avshalom C.; Vaidman, Lev (1993-07-01). "Quantum mechanical interaction-free measurements". Foundations of Physics. 23 (7): 987–997. arXiv:hep-th/9305002Freely accessible. Bibcode:1993FoPh...23..987E. CiteSeerX 10.1.1.263.5508Freely accessible. doi:10.1007/BF00736012. ISSN 0015-9018. 
  2. ^ Kwiat, Paul; Weinfurter, Harald; Herzog, Thomas; Zeilinger, Anton; Kasevich, Mark A. (1995-06-12). "Interaction-Free Measurement". Physical Review Letters. 74 (24): 4763–4766. Bibcode:1995PhRvL..74.4763K. CiteSeerX 10.1.1.561.6205Freely accessible. doi:10.1103/PhysRevLett.74.4763. PMID 10058593. 
  3. ^ White, Andrew G. (1998). ""Interaction-free" imaging". Physical Review A. 58 (1): 605–613. arXiv:quant-ph/9803060Freely accessible. Bibcode:1998PhRvA..58..605W. doi:10.1103/PhysRevA.58.605. 
  4. ^ Tsegaye, T.; Goobar, E.; Karlsson, A.; Björk, G.; Loh, M. Y.; Lim, K. H. (1998-05-01). "Efficient interaction-free measurements in a high-finesse interferometer". Physical Review A. 57 (5): 3987–3990. Bibcode:1998PhRvA..57.3987T. doi:10.1103/PhysRevA.57.3987. 
  5. ^ Putnam, William P. (2009). "Noninvasive electron microscopy with interaction-free quantum measurements". Physical Review A. 80 (4): 040902. Bibcode:2009PhRvA..80d0902P. doi:10.1103/PhysRevA.80.040902. 
  6. ^ Kruit, P.; Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R.; Hammer, J.; Thomas, S.; Weber, P.; Klopfer, B. (May 2016). "Designs for a quantum electron microscope". Ultramicroscopy. 164: 31–45. arXiv:1510.05946Freely accessible. doi:10.1016/j.ultramic.2016.03.004. ISSN 0304-3991. PMID 26998703.