Iodine oxide

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Iodine oxides are chemical compounds of oxygen and iodine. The chemistry of these compound is complicated with only a few having been well characterized. Many have been detected in the atmosphere and are believed to be particularly important at in the marine boundary layer.[1]

Iodine oxides[2]
Molecular formula I2O IO[3] IO2 I2O4 I2O5 I4O9
Name diiodine monoxide iodine monoxide iodine dioxide diiodine tetroxide diiodine pentoxide tetraiodine nonoxide
Structure I2O IO IO2 (IO2)2 O(IO2)2 I(OIO2)3
CAS registry 39319-71-6 14696-98-1 13494-92-3 1024652-24-1 12029-98-0 66523-94-2
Appearance Unknown purple gas yellow solid yellow solid white crystalline solid dark yellow solid
Oxidation state 1+ +2 +4 +3 and +5 +5 +3 and +5
Melting point not isolable not isolable not isolable decomp. 100 °C decomp. 300–350 °C decomp. 75 °C
Specific gravity 4.2 4.8
Solubility in water decomp. to HIO3 + I2 187 g/100 mL decomp. to HIO3 + I2

Diiodine monoxide has largely been the subject of theoretical study,[4] but there is some evidence that it may be prepared in a similar manner to dichlorine monoxide, via a reaction between HgO and I2.[5] The compound appears to be highly unstable but can react with alkenes to give halogenated products.[6]

Radical iodine oxide (IO), iodine dioxide (IO2) and diiodine tetroxide ((IO2)2) all possess significant and interconnected atmospheric chemistry. They are formed, in very small quantities, at the marine boundary layer by the photooxidation of diiodomethane, which is produced by macroalga such as seaweed.[7] Despite the small quantities produced (typically below ppt) they are thought to be powerful ozone depletion agents.[8][9]

Diiodine pentoxide (I2O5) is the anhydride of iodic acid and the only stable anhydride of iodine.

Tetraiodine nonoxide (I4O9) has been prepared by the gas-phase reaction of I2 with O3 but has not been extensively studied.[10]

See also[edit]

LiI BeI2 BI3 CI4 NI3 I2O4,
NaI MgI2 AlI3 SiI4 PI3,
S ICl,
KI CaI2 Sc TiI4 VI3 CrI3 MnI2 FeI2 CoI2 NiI2 CuI ZnI2 Ga2I6 GeI2,
AsI3 Se IBr Kr
RbI SrI2 Y ZrI4 Nb Mo Tc Ru Rh Pd AgI CdI2 InI3 SnI4,
SbI3 TeI4 I Xe
CsI BaI2   Hf Ta W Re Os Ir Pt AuI Hg2I2,
TlI PbI2 BiI3 Po AtI Rn
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
La Ce Pr Nd Pm SmI2 Eu Gd TbI3 Dy Ho Er Tm Yb Lu
Ac ThI4 Pa UI3,
Np Pu Am Cm Bk Cf Es Fm Md No Lr


  1. ^ Kaltsoyannis, Nikolas; Plane, John M. C. (2008). "Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere". Physical Chemistry Chemical Physics. 10 (13): 1723. doi:10.1039/B715687C. 
  2. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  3. ^ Nikitin, I V (31 August 2008). "Halogen monoxides". Russian Chemical Reviews. 77 (8): 739–749. doi:10.1070/RC2008v077n08ABEH003788. 
  4. ^ Novak, Igor (1998). "Theoretical study of I2O". Heteroatom Chemistry. 9 (4): 383–385. doi:10.1002/(SICI)1098-1071(1998)9:4<383::AID-HC6>3.0.CO;2-9. 
  5. ^ Forbes, Craig P.; Goosen, André; Laue, Hugh A. H. (1974). "Hypoiodite reaction: kinetic study of the reaction of 1,1-diphenyl-ethylene with mercury(II) oxide iodine". Journal of the Chemical Society, Perkin Transactions 1: 2350. doi:10.1039/P19740002350. 
  6. ^ Cambie, Richard C.; Hayward, Rodney C.; Lindsay, Barry G.; Phan, Alice I. T.; Rutledge, Peter S.; Woodgate, Paul D. (1976). "Reactions of iodine oxide with alkenes". Journal of the Chemical Society, Perkin Transactions 1 (18): 1961. doi:10.1039/P19760001961. 
  7. ^ Hoffmann, Thorsten; O'Dowd, Colin D.; Seinfeld, John H. (15 May 2001). "Iodine oxide homogeneous nucleation: An explanation for coastal new particle production". Geophysical Research Letters. 28 (10): 1949–1952. doi:10.1029/2000GL012399. 
  8. ^ Saiz-Lopez, A.; Fernandez, R. P.; Ordóñez, C.; Kinnison, D. E.; Gómez Martín, J. C.; Lamarque, J.-F.; Tilmes, S. (10 December 2014). "Iodine chemistry in the troposphere and its effect on ozone". Atmospheric Chemistry and Physics. 14 (23): 13119–13143. doi:10.5194/acp-14-13119-2014. 
  9. ^ Cox, R. A.; Bloss, W. J.; Jones, R. L.; Rowley, D. M. (1 July 1999). "OIO and the atmospheric cycle of iodine". Geophysical Research Letters. 26 (13): 1857–1860. doi:10.1029/1999GL900439. 
  10. ^ Sunder, S.; Wren, J. C.; Vikis, A. C. (December 1985). "Raman spectra of I4O9 formed by the reaction of iodine with ozone". Journal of Raman Spectroscopy. 16 (6): 424–426. doi:10.1002/jrs.1250160611.