Irradiance
In radiometry (measurement of electromagnetic radiation), irradiance is the radiant flux (power) received by a surface per unit area, and spectral irradiance is the irradiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of irradiance is the watt per square metre (W/m2), while that of spectral irradiance is the watt per square metre per hertz (W·m−2·Hz−1) or the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre (W·m−2·nm−1). The CGS unit erg per square centimetre per second (erg·cm−2·s−1) is often used in astronomy. Irradiance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.
Contents
Mathematical definitions[edit]
Irradiance[edit]
Irradiance of a surface, denoted Ee ("e" for "energetic", to avoid confusion with photometric quantities), is defined as[1]
where
- ∂ is the partial derivative symbol;
- Φe is the radiant flux received;
- A is the area.
If we want to talk about the radiant flux emitted by a surface, we speak of radiant exitance.
Spectral irradiance[edit]
Spectral irradiance in frequency of a surface, denoted Ee,ν, is defined as[1]
where ν is the frequency.
Spectral irradiance in wavelength of a surface, denoted Ee,λ, is defined as[1]
where λ is the wavelength.
Property[edit]
Irradiance of a surface is also, according to the definition of radiant flux, equal to the time-average of the component of the Poynting vector perpendicular to the surface:
where
- < • > is the time-average;
- S is the Poynting vector;
- n is a unit vector normal to that surface;
- α is the angle between n and S.
For a propagating sinusoidal linearly polarized electromagnetic plane wave, the Poynting vector always points to the direction of propagation while oscillating in magnitude. The irradiance of a surface is then given by[2]
where
- Em is the amplitude of the wave's electric field;
- n is the refractive index of the medium of propagation;
- c is the speed of light in vacuum;
- μ0 is the vacuum permeability;
- ε0 is the vacuum permittivity.
This formula assumes that the magnetic susceptibility is negligible, i.e. that μr ≈ 1 where μr is the magnetic permeability of the propagation medium. This assumption is typically valid in transparent media in the optical frequency range.
Solar energy[edit]
The global irradiance on a horizontal surface on Earth consists of the direct irradiance Ee,dir and diffuse irradiance Ee,diff. On a tilted plane, there is another irradiance component, Ee,refl, which is the component that is reflected from the ground. The average ground reflection is about 20% of the global irradiance. Hence, the irradiance Ee on a tilted plane consists of three components:[3]
The integral of solar irradiance over a time period is called "solar exposure" or "insolation".[3][4]
SI radiometry units[edit]
| Quantity | Unit | Dimension | Notes | |||||
|---|---|---|---|---|---|---|---|---|
| Name | Symbol[nb 1] | Name | Symbol | Symbol | ||||
| Radiant energy | Qe[nb 2] | joule | J | M⋅L2⋅T−2 | Energy of electromagnetic radiation. | |||
| Radiant energy density | we | joule per cubic metre | J/m3 | M⋅L−1⋅T−2 | Radiant energy per unit volume. | |||
| Radiant flux | Φe[nb 2] | watt | W or J/s | M⋅L2⋅T−3 | Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power". | |||
| Spectral flux | Φe,ν[nb 3] or Φe,λ[nb 4] |
watt per hertz or watt per metre |
W/Hz or W/m |
M⋅L2⋅T−2 or M⋅L⋅T−3 |
Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. | |||
| Radiant intensity | Ie,Ω[nb 5] | watt per steradian | W/sr | M⋅L2⋅T−3 | Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. | |||
| Spectral intensity | Ie,Ω,ν[nb 3] or Ie,Ω,λ[nb 4] |
watt per steradian per hertz or watt per steradian per metre |
W⋅sr−1⋅Hz−1 or W⋅sr−1⋅m−1 |
M⋅L2⋅T−2 or M⋅L⋅T−3 |
Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. | |||
| Radiance | Le,Ω[nb 5] | watt per steradian per square metre | W⋅sr−1⋅m−2 | M⋅T−3 | Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity". | |||
| Spectral radiance | Le,Ω,ν[nb 3] or Le,Ω,λ[nb 4] |
watt per steradian per square metre per hertz or watt per steradian per square metre, per metre |
W⋅sr−1⋅m−2⋅Hz−1 or W⋅sr−1⋅m−3 |
M⋅T−2 or M⋅L−1⋅T−3 |
Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity". | |||
| Irradiance | Ee[nb 2] | watt per square metre | W/m2 | M⋅T−3 | Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity". | |||
| Spectral irradiance | Ee,ν[nb 3] or Ee,λ[nb 4] |
watt per square metre per hertz or watt per square metre, per metre |
W⋅m−2⋅Hz−1 or W/m3 |
M⋅T−2 or M⋅L−1⋅T−3 |
Irradiance of a surface per unit frequency or wavelength. The terms spectral flux density or more confusingly "spectral intensity" are also used. Non-SI units of spectral irradiance include Jansky = 10−26 W⋅m−2⋅Hz−1 and solar flux unit (1SFU = 10−22 W⋅m−2⋅Hz−1). | |||
| Radiosity | Je[nb 2] | watt per square metre | W/m2 | M⋅T−3 | Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity". | |||
| Spectral radiosity | Je,ν[nb 3] or Je,λ[nb 4] |
watt per square metre per hertz or watt per square metre, per metre |
W⋅m−2⋅Hz−1 or W/m3 |
M⋅T−2 or M⋅L−1⋅T−3 |
Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity". | |||
| Radiant exitance | Me[nb 2] | watt per square metre | W/m2 | M⋅T−3 | Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity". | |||
| Spectral exitance | Me,ν[nb 3] or Me,λ[nb 4] |
watt per square metre per hertz or watt per square metre, per metre |
W⋅m−2⋅Hz−1 or W/m3 |
M⋅T−2 or M⋅L−1⋅T−3 |
Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity". | |||
| Radiant exposure | He | joule per square metre | J/m2 | M⋅T−2 | Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence". | |||
| Spectral exposure | He,ν[nb 3] or He,λ[nb 4] |
joule per square metre per hertz or joule per square metre, per metre |
J⋅m−2⋅Hz−1 or J/m3 |
M⋅T−1 or M⋅L−1⋅T−2 |
Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence". | |||
| Hemispherical emissivity | ε | 1 | Radiant exitance of a surface, divided by that of a black body at the same temperature as that surface. | |||||
| Spectral hemispherical emissivity | εν or ελ |
1 | Spectral exitance of a surface, divided by that of a black body at the same temperature as that surface. | |||||
| Directional emissivity | εΩ | 1 | Radiance emitted by a surface, divided by that emitted by a black body at the same temperature as that surface. | |||||
| Spectral directional emissivity | εΩ,ν or εΩ,λ |
1 | Spectral radiance emitted by a surface, divided by that of a black body at the same temperature as that surface. | |||||
| Hemispherical absorptance | A | 1 | Radiant flux absorbed by a surface, divided by that received by that surface. This should not be confused with "absorbance". | |||||
| Spectral hemispherical absorptance | Aν or Aλ |
1 | Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance". | |||||
| Directional absorptance | AΩ | 1 | Radiance absorbed by a surface, divided by the radiance incident onto that surface. This should not be confused with "absorbance". | |||||
| Spectral directional absorptance | AΩ,ν or AΩ,λ |
1 | Spectral radiance absorbed by a surface, divided by the spectral radiance incident onto that surface. This should not be confused with "spectral absorbance". | |||||
| Hemispherical reflectance | R | 1 | Radiant flux reflected by a surface, divided by that received by that surface. | |||||
| Spectral hemispherical reflectance | Rν or Rλ |
1 | Spectral flux reflected by a surface, divided by that received by that surface. | |||||
| Directional reflectance | RΩ | 1 | Radiance reflected by a surface, divided by that received by that surface. | |||||
| Spectral directional reflectance | RΩ,ν or RΩ,λ |
1 | Spectral radiance reflected by a surface, divided by that received by that surface. | |||||
| Hemispherical transmittance | T | 1 | Radiant flux transmitted by a surface, divided by that received by that surface. | |||||
| Spectral hemispherical transmittance | Tν or Tλ |
1 | Spectral flux transmitted by a surface, divided by that received by that surface. | |||||
| Directional transmittance | TΩ | 1 | Radiance transmitted by a surface, divided by that received by that surface. | |||||
| Spectral directional transmittance | TΩ,ν or TΩ,λ |
1 | Spectral radiance transmitted by a surface, divided by that received by that surface. | |||||
| Hemispherical attenuation coefficient | μ | reciprocal metre | m−1 | L−1 | Radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume. | |||
| Spectral hemispherical attenuation coefficient | μν or μλ |
reciprocal metre | m−1 | L−1 | Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume. | |||
| Directional attenuation coefficient | μΩ | reciprocal metre | m−1 | L−1 | Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume. | |||
| Spectral directional attenuation coefficient | μΩ,ν or μΩ,λ |
reciprocal metre | m−1 | L−1 | Spectral radiance absorbed and scattered by a volume per unit length, divided by that received by that volume. | |||
| See also: SI · Radiometry · Photometry | ||||||||
- ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
- ^ a b c d e Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
- ^ a b c d e f g Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek)—not to be confused with suffix "v" (for "visual") indicating a photometric quantity.
- ^ a b c d e f g Spectral quantities given per unit wavelength are denoted with suffix "λ" (Greek).
- ^ a b Directional quantities are denoted with suffix "Ω" (Greek).
See also[edit]
- Illuminance
- Spectral flux density
- Albedo
- Fluence
- Insolation
- Light diffusion
- PI curve (photosynthesis-irradiance curve)
- Solar azimuth angle
- Solar irradiation
- Solar noon
- Stefan–Boltzmann law
References[edit]
- ^ a b c "Thermal insulation — Heat transfer by radiation — Physical quantities and definitions". ISO 9288:1989. ISO catalogue. 1989. Retrieved 2015-03-15.
- ^ Griffiths, David J. (1999). Introduction to electrodynamics (3. ed., reprint. with corr. ed.). Upper Saddle River, NJ [u.a.]: Prentice-Hall. ISBN 0-13-805326-X.
- ^ a b Quaschning, Volker (2003). "Technology fundamentals—The sun as an energy resource". Renewable Energy World 6 (5): 90–93.
- ^ Liu, B. Y. H.; Jordan, R. C. (1960). "The interrelationship and characteristic distribution of direct, diffuse and total solar radiation". Solar Energy 4 (3): 1. doi:10.1016/0038-092X(60)90062-1.





