Isotopes of strontium
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Sr) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).
Only 87Sr is radiogenic; it is produced by decay from the radioactive alkali metal 87Rb, which has a half-life of 4.88 × 1010 years (i.e. more than three times longer than the current age of the universe). Thus, there are two sources of 87Sr in any material: primordial, formed during nucleosynthesis along with 84Sr, 86Sr and 88Sr; and that formed by radioactive decay of 87Rb. The ratio 87Sr/86Sr is the parameter typically reported in geologic investigations; ratios in minerals and rocks have values ranging from about 0.7 to greater than 4.0. Because strontium has an electron configuration similar to that of calcium, it readily substitutes for Ca in minerals.
In addition to the four stable isotopes, thirty-one unstable isotopes of strontium are known to exist (see Table, below): the longest-lived of these are 90Sr with a half-life of 28.9 years and 85Sr with a half-life of 64.853 days. Of importance are strontium-89 (89Sr) with a half-life of 50.57 days, and strontium-90 (90Sr). They decay by emitting an electron and an antineutrino () in beta decay (β− decay) to become yttrium:
89Sr is an artificial radioisotope used in treatment of bone cancer. In circumstances where cancer patients have widespread and painful bony metastases, the administration of 89Sr results in the delivery of beta particles directly to the area of bony problem, where calcium turnover is greatest.
90Sr is a by-product of nuclear fission, present in nuclear fallout. The 1986 Chernobyl nuclear accident contaminated a vast area with 90Sr. It causes health problems, as it substitutes for calcium in bone, preventing expulsion from the body. Because it is a long-lived high-energy beta emitter, it is used in SNAP (Systems for Nuclear Auxiliary Power) devices. These devices hold promise for use in spacecraft, remote weather stations, navigational buoys, etc., where a lightweight, long-lived, nuclear-electric power source is required.
The lightest isotope is 73Sr and the heaviest is 107Sr.
All other Strontium isotopes have half-lives shorter than 55 days, most under 100 minutes.
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[4][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
73Sr | 38 | 35 | 72.96597(64)# | >25 ms | β+ (>99.9%) | 73Rb | 1/2−# | ||
β+, p (<.1%) | 72Kr | ||||||||
74Sr | 38 | 36 | 73.95631(54)# | 50# ms [>1.5 µs] | β+ | 74Rb | 0+ | ||
75Sr | 38 | 37 | 74.94995(24) | 88(3) ms | β+ (93.5%) | 75Rb | (3/2−) | ||
β+, p (6.5%) | 74Kr | ||||||||
76Sr | 38 | 38 | 75.94177(4) | 7.89(7) s | β+ | 76Rb | 0+ | ||
77Sr | 38 | 39 | 76.937945(10) | 9.0(2) s | β+ (99.75%) | 77Rb | 5/2+ | ||
β+, p (.25%) | 76Kr | ||||||||
78Sr | 38 | 40 | 77.932180(8) | 159(8) s | β+ | 78Rb | 0+ | ||
79Sr | 38 | 41 | 78.929708(9) | 2.25(10) min | β+ | 79Rb | 3/2(−) | ||
80Sr | 38 | 42 | 79.924521(7) | 106.3(15) min | β+ | 80Rb | 0+ | ||
81Sr | 38 | 43 | 80.923212(7) | 22.3(4) min | β+ | 81Rb | 1/2− | ||
82Sr | 38 | 44 | 81.918402(6) | 25.36(3) d | EC | 82Rb | 0+ | ||
83Sr | 38 | 45 | 82.917557(11) | 32.41(3) h | β+ | 83Rb | 7/2+ | ||
83mSr | 259.15(9) keV | 4.95(12) s | IT | 83Sr | 1/2− | ||||
84Sr | 38 | 46 | 83.913425(3) | Observationally Stable[n 3] | 0+ | 0.0056(1) | 0.0055–0.0058 | ||
85Sr | 38 | 47 | 84.912933(3) | 64.853(8) d | EC | 85Rb | 9/2+ | ||
85mSr | 238.66(6) keV | 67.63(4) min | IT (86.6%) | 85Sr | 1/2− | ||||
β+ (13.4%) | 85Rb | ||||||||
86Sr | 38 | 48 | 85.9092607309(91) | Stable | 0+ | 0.0986(1) | 0.0975–0.0999 | ||
86mSr | 2955.68(21) keV | 455(7) ns | 8+ | ||||||
87Sr[n 4] | 38 | 49 | 86.9088774970(91) | Stable | 9/2+ | 0.0700(1) | 0.0694–0.0714 | ||
87mSr | 388.533(3) keV | 2.815(12) h | IT (99.7%) | 87Sr | 1/2− | ||||
EC (.3%) | 87Rb | ||||||||
88Sr[n 5] | 38 | 50 | 87.9056122571(97) | Stable | 0+ | 0.8258(1) | 0.8229–0.8275 | ||
89Sr[n 5] | 38 | 51 | 88.9074507(12) | 50.57(3) d | β− | 89Y | 5/2+ | ||
90Sr[n 5] | 38 | 52 | 89.907738(3) | 28.90(3) y | β− | 90Y | 0+ | ||
91Sr | 38 | 53 | 90.910203(5) | 9.63(5) h | β− | 91Y | 5/2+ | ||
92Sr | 38 | 54 | 91.911038(4) | 2.66(4) h | β− | 92Y | 0+ | ||
93Sr | 38 | 55 | 92.914026(8) | 7.423(24) min | β− | 93Y | 5/2+ | ||
94Sr | 38 | 56 | 93.915361(8) | 75.3(2) s | β− | 94Y | 0+ | ||
95Sr | 38 | 57 | 94.919359(8) | 23.90(14) s | β− | 95Y | 1/2+ | ||
96Sr | 38 | 58 | 95.921697(29) | 1.07(1) s | β− | 96Y | 0+ | ||
97Sr | 38 | 59 | 96.926153(21) | 429(5) ms | β− (99.95%) | 97Y | 1/2+ | ||
β−, n (.05%) | 96Y | ||||||||
97m1Sr | 308.13(11) keV | 170(10) ns | (7/2)+ | ||||||
97m2Sr | 830.8(2) keV | 255(10) ns | (11/2−)# | ||||||
98Sr | 38 | 60 | 97.928453(28) | 0.653(2) s | β− (99.75%) | 98Y | 0+ | ||
β−, n (.25%) | 97Y | ||||||||
99Sr | 38 | 61 | 98.93324(9) | 0.269(1) s | β− (99.9%) | 99Y | 3/2+ | ||
β−, n (.1%) | 98Y | ||||||||
100Sr | 38 | 62 | 99.93535(14) | 202(3) ms | β− (99.02%) | 100Y | 0+ | ||
β−, n (.98%) | 99Y | ||||||||
101Sr | 38 | 63 | 100.94052(13) | 118(3) ms | β− (97.63%) | 101Y | (5/2−) | ||
β−, n (2.37%) | 100Y | ||||||||
102Sr | 38 | 64 | 101.94302(12) | 69(6) ms | β− (94.5%) | 102Y | 0+ | ||
β−, n (5.5%) | 101Y | ||||||||
103Sr | 38 | 65 | 102.94895(54)# | 50# ms [>300 ns] | β− | 103Y | |||
104Sr | 38 | 66 | 103.95233(75)# | 30# ms [>300 ns] | β− | 104Y | 0+ | ||
105Sr | 38 | 67 | 104.95858(75)# | 20# ms [>300 ns] |
- ^ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ^ Bold for stable isotopes, bold italic for nearly-stable isotopes (half-life longer than the age of the universe)
- ^ Believed to decay by β+β+ to 84Kr
- ^ Used in rubidium-strontium dating
- ^ a b c Fission product
Notes
- Evaluated isotopic composition is for most but not all commercial samples.
- The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
- Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Strontium". CIAAW. 1969.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ "Universal Nuclide Chart". nucleonica.
{{cite web}}
: Unknown parameter|registration=
ignored (|url-access=
suggested) (help)
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
{{cite journal}}
: Unknown parameter|laysummary=
ignored (help)
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005.
{{cite web}}
: Check date values in:|accessdate=
(help) - N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide (ed.). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
{{cite book}}
: Unknown parameter|nopp=
ignored (|no-pp=
suggested) (help)
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.