Isotopes of oganesson

From Wikipedia, the free encyclopedia
  (Redirected from Isotopes of ununoctium)
Jump to: navigation, search
Main isotopes of oganesson
Iso­tope Decay
abun­dance half-life mode energy (MeV) prod
294Og[1] syn 0.7 ms α 11.65±0.06 290Lv

Oganesson (118Og) is a synthetic element created in particle accelerators, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first (and so far only) isotope to be synthesized was 294Og in 2006; it has a half-life of 0.7 milliseconds.

List of isotopes[edit]

Z(p) N(n)  
isotopic mass (u)
half-life decay mode(s) daughter
294Og 118 176 294.21392(71)# 0.7 ms α 290Lv 0+
SF (various)


  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values from Ame2003 denote one standard deviation. Values from IUPAC are expanded uncertainties.


Theoretical calculations done on the synthetic pathways for, and the half-life of, other isotopes have shown that some could be slightly more stable than the synthesized isotope 294Og, most likely 293Og, 295Og, 296Og, 297Og, 298Og, 300Og and 302Og.[2][3][4] Of these, 297Og, might provide the best chances for obtaining longer-lived nuclei,[2][4] and thus might become the focus of future work with this element. Some isotopes with many more neutrons, such as some located around 313Og, could also provide longer-lived nuclei.[5]

Target-projectile combinations leading to Z=118 compound nuclei[edit]

The below table contains various combinations of targets and projectiles that could be used to form compound nuclei with Z=118.

Target Projectile CN Attempt result
160Gd 136Xe 296Og* Reaction yet to be attempted
208Pb 86Kr 294Og* Failure to date
232Th 64Ni 296Og* Reaction yet to be attempted
238U 58Fe 296Og* Reaction yet to be attempted
244Pu 54Cr 298Og* Reaction yet to be attempted
248Cm 50Ti 298Og* Reaction yet to be attempted
250Cm 50Ti 300Og* Reaction yet to be attempted
249Cf 48Ca 297Og* Successful reaction
251Cf 48Ca 299Og* Reaction yet to be attempted
252Cf 48Ca 300Og* Reaction yet to be attempted
257Fm 40Ar 297Og* Reaction yet to be attempted

Theoretical calculations on evaporation cross sections[edit]

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system ; σ = cross section

Target Projectile CN Channel (product) σ max Model Ref
208Pb 86Kr 294Og 1n (293Og) 0.1 pb DNS [6]
208Pb 85Kr 293Og 1n (292Og) 0.18 pb DNS [6]
252Cf 48Ca 300Og 3n (297Og) 1.2 pb DNS [7]
251Cf 48Ca 299Og 3n (296Og) 1.2 pb DNS [7]
249Cf 48Ca 297Og 3n (294Og) 0.3 pb DNS [7]


  1. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; et al. (2006-10-09). "Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions". Physical Review C. 74 (4): 044602. Bibcode:2006PhRvC..74d4602O. doi:10.1103/PhysRevC.74.044602. Retrieved 2008-01-18. 
  2. ^ a b P. Roy Chowdhury; C. Samanta; D. N. Basu (January 26, 2006). "α decay half-lives of new superheavy elements". Physical Review C. 73: 014612. arXiv:nucl-th/0507054Freely accessible. Bibcode:2006PhRvC..73a4612C. doi:10.1103/PhysRevC.73.014612. Retrieved 2008-01-18. 
  3. ^ C. Samanta; P. Roy Chowdhury; D. N. Basu (April 6, 2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nuclear Physics A. 789 (1–4): 142–154. arXiv:nucl-th/0703086Freely accessible. Bibcode:2007NuPhA.789..142S. doi:10.1016/j.nuclphysa.2007.04.001. Retrieved 2008-01-18. 
  4. ^ a b G. Royer; K. Zbiri; C. Bonilla (2004). "Entrance channels and alpha decay half-lives of the heaviest elements". Nuclear Physics A. 730 (3–4): 355–376. arXiv:nucl-th/0410048Freely accessible. Bibcode:2004NuPhA.730..355R. doi:10.1016/j.nuclphysa.2003.11.010. Retrieved 2008-01-18. 
  5. ^ S. B. Duarte; O. A. P. Tavares; M. Gonçalves; O. Rodríguez; F. Guzmán; T. N. Barbosa; F. García; A. Dimarco (2004). "Half-life predictions for decay modes of superheavy nuclei". Journal of Physics G: Nuclear and Particle Physics. 30 (10): 1487–1494. Bibcode:2004JPhG...30.1487D. doi:10.1088/0954-3899/30/10/014. Retrieved 2008-01-18. 
  6. ^ a b Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner (2007). "Formation of superheavy nuclei in cold fusion reactions". Physical Review C. 76 (4): 044606. arXiv:0707.2588Freely accessible. Bibcode:2007PhRvC..76d4606F. doi:10.1103/PhysRevC.76.044606. 
  7. ^ a b c Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A. 816 (1–4): 33–51. arXiv:0803.1117Freely accessible. Bibcode:2009NuPhA.816...33F. doi:10.1016/j.nuclphysa.2008.11.003. 
Isotopes of tennessine Isotopes of oganesson Isotopes of ununennium
Table of nuclides