Jessen's icosahedron

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Jessen's icosahedron
Jessen's icosahedron.svg
  • 24 short and convex
  • 6 long and concave
Dihedral angle (degrees)90
Jessen icosahedron net.svg

Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, is a non-convex polyhedron with the same numbers of vertices, edges, and faces as the regular icosahedron. It is named for Børge Jessen who studied it in 1967,[1] although the same shape had also been constructed earlier by Kenneth Snelson.[2] In 1971, it was independently discovered and studied by Adrien Douady under the name six-pointed shaddock.[3]

The faces of Jessen's icosahedron meet only in right angles, even though they cannot all be made parallel to the coordinate planes. It is a "shaky polyhedron", meaning that (like a flexible polyhedron) it is not infinitesimally rigid. Outlining the edges of this polyhedron with struts and cables produces a widely-used tensegrity structure,[4] also called the six-bar tensegrity,[2] tensegrity icosahedron, or expanded octahedron.[5]

Construction and geometric properties[edit]

View with translucent faces

The vertices of Jessen's icosahedron may be chosen to have as their coordinates the twelve triplets given by the cyclic permutations of the coordinates .[1] With this coordinate representation, the short edges of the icosahedron (the ones with convex angles) have length , and the long (reflex) edges have length . The faces of the icosahedron are eight congruent equilateral triangles with the short side length, and twelve congruent obtuse isosceles triangles with one long edge and two short edges.[6]

Jessen's icosahedron is vertex-transitive (or isogonal), meaning that it has symmetries taking any vertex to any other vertex.[7] Its dihedral angles are all right angles. One can use it as the basis for the construction of an infinite family of polyhedra with right dihedral angles, formed by gluing copies of Jessen's icosahedron together on their equilateral-triangle faces.[1]

As with the simpler Schönhardt polyhedron, the interior of Jessen's icosahedron cannot be triangulated into tetrahedra without adding new vertices.[8] However, because its dihedral angles are rational multiples of , it has Dehn invariant equal to zero. Therefore, it is scissors-congruent to a cube, meaning that it can be sliced into smaller polyhedral pieces that can be rearranged to form a solid cube.[1]

Structural rigidity[edit]

Het Ding [nl], a tensegrity sculpture whose struts and cables form the outline of Jessen's icosahedron, at the University of Twente
Het Ding [nl], a tensegrity sculpture whose struts and cables form the outline of Jessen's icosahedron, at the University of Twente

Jessen's icosahedron is not a flexible polyhedron: if it is constructed with rigid panels for its faces, connected by hinges, it cannot change shape. However, it is also not infinitesimally rigid. This means that there exists a continuous motion of its vertices that, while not actually preserving the edge lengths and face shapes of the polyhedron, does so to a first-order approximation. As a rigid but not infinitesimally rigid polyhedron, it forms an example of a "shaky polyhedron".[4] Because very small changes in its edge lengths can cause much bigger changes in its angles, physical models of the polyhedron seem to be flexible.[9]

Replacing the long concave-dihedral edges of Jessen's icosahedron by rigid struts, and the shorter convex-dihedral edges by cables or wires, produces a tensegrity structure constructed in 1949 by Kenneth Snelson[2] and later described by Buckminster Fuller,[4] which has also been called the "six-bar tensegrity",[2] "tensegrity icosahedron", or "expanded octahedron".[5] As well as in tensegrity sculptures, this structure is "the most ubiquitous form of tensegrity robots", and the "Skwish" children's toy based on this structure was "pervasive in the 1980's".[2] The "super ball bot" concept based on this design has been proposed by the NASA Institute for Advanced Concepts as a way to enclose space exploration devices for safe landings on other planets.[10] Anthony Pugh calls this structure "perhaps the best known, and certainly one of the most impressive tensegrity figures".[5]

Jessen's icosahedron is weakly convex, meaning that its vertices are in convex position, and its existence demonstrates that weakly convex polyhedra need not be infinitesimally rigid. However, it has been conjectured that weakly convex polyhedra that can be triangulated must be infinitesimally rigid, and this conjecture has been proven under the additional assumption that the exterior part of the convex hull of the polyhedron can also be triangulated.[11]

Related shapes[edit]

Regular icosahedron and its non-convex variant, which differs from Jessen's icosahedron in having obtuse dihedral angles instead of right angles

A similar shape can be formed by keeping the vertices of a regular icosahedron in their original positions and replacing certain pairs of equilateral- by pairs of isosceles-triangle faces. This shape has also sometimes incorrectly been called Jessen's icosahedron.[12] However, the resulting polyhedron does not form a tensegrity structure,[5] and does not have right-angled dihedrals. The vertices of Jessen's icosahedron are perturbed from these positions in order to give all the dihedrals right angles.

Jessen's icosahedron is one of a continuous family of icosahedra with 8 equilateral- and 12 isosceles-triangle faces, obtained from a regular octahedron by dividing each of its edges in the same proportion and connecting the division points in the pattern of a regular icosahedron. The convex shapes in this family range from the octahedron itself through the regular icosahedron to the cuboctahedron, with its square faces subdivided into two right triangles in a flat plane. Continuing the same family past the cuboctahedron produces non-convex shapes, including Jessen's icosahedron. This family was described by H. S. M. Coxeter in 1947;[13] later, the twisting, expansive-contractive transformations between members of this family were named Jitterbug transformations by Buckminster Fuller.[14]

In 2018, Jessen's icosahedron was generalized by V. A. Gor’kavyi and A. D. Milka [uk] to an infinite family of rigid but not infinitesimally rigid polyhedra.[15]


  1. ^ a b c d Jessen, Børge (1967). "Orthogonal icosahedra". Nordisk Matematisk Tidskrift. 15 (2): 90–96. JSTOR 24524998. MR 0226494.
  2. ^ a b c d e Cera, Angelo Brian Micubo (2020). Design, Control, and Motion Planning of Cable-Driven Flexible Tensegrity Robots (Ph.D. thesis). University of California, Berkeley. p. 5.
  3. ^ Berger, Marcel (1987). "Geometry". Universitext. II. Springer-Verlag: 47. Cite journal requires |journal= (help)
  4. ^ a b c Goldberg, Michael (1978). "Unstable polyhedral structures". Mathematics Magazine. 51 (3): 165–170. doi:10.2307/2689996. JSTOR 2689996. MR 0498579.
  5. ^ a b c d Pugh, Anthony (1976). An Introduction to Tensegrity. University of California Press. pp. 11, 26. ISBN 9780520030558.
  6. ^ Kim, Kyunam; Agogino, Adrian K.; Agogino, Alice M. (June 2020). "Rolling locomotion of cable-driven soft spherical tensegrity robots". Soft Robotics. 7 (3): 346–361. doi:10.1089/soro.2019.0056. PMC 7301328.
  7. ^ Grünbaum, Branko (1999). "Acoptic polyhedra" (PDF). Advances in Discrete and Computational Geometry (South Hadley, MA, 1996). Contemporary Mathematics. 223. Providence, Rhode Island: American Mathematical Society. pp. 163–199. doi:10.1090/conm/223/03137. MR 1661382.
  8. ^ Bezdek, Andras; Carrigan, Braxton (2016). "On nontriangulable polyhedra". Beiträge zur Algebra und Geometrie. 57 (1): 51–66. doi:10.1007/s13366-015-0248-4. MR 3457762.
  9. ^ Gorkavyy, V.; Kalinin, D. (2016). "On model flexibility of the Jessen orthogonal icosahedron". Beiträge zur Algebra und Geometrie. 57 (3): 607–622. doi:10.1007/s13366-016-0287-5. MR 3535071.
  10. ^ Stinson, Liz (February 26, 2014). "NASA's Latest Robot: A Rolling Tangle of Rods That Can Take a Beating". Wired.
  11. ^ Izmestiev, Ivan; Schlenker, Jean-Marc (2010). "Infinitesimal rigidity of polyhedra with vertices in convex position". Pacific Journal of Mathematics. 248 (1): 171–190. arXiv:0711.1981. doi:10.2140/pjm.2010.248.171. MR 2734170.
  12. ^ Incorrect descriptions of Jessen's icosahedron as having the same vertex positions as a regular icosahedron include:
  13. ^ Coxeter, H.S.M. (1973). "Section 3.7: Coordinates for the vertices of the regular and quasi-regular solids". Regular Polytopes (3rd ed.). New York: Dover.; 1st ed., Methuen, 1947
  14. ^ Verheyen, H. F. (1989). "The complete set of Jitterbug transformers and the analysis of their motion". Computers and Mathematics with Applications. 17 (1–3): 203–250. doi:10.1016/0898-1221(89)90160-0. MR 0994201.
  15. ^ Gorkavyi, V. A.; Milka, A. D. (2018). "Birosettes are model flexors". Ukrainian Math. J. 70 (7): 1022–1041. MR 3846095.

External links[edit]