Johnson's SU-distribution

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Johnson's SU
Probability density function
JohnsonSU
Cumulative distribution function
Johnson SU
Parameters (real)
Support
PDF
CDF
Mean
Median
Variance

The Johnson's SU-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949.[1][2] Johnson proposed it as a transformation of the normal distribution:[3]

where .

Generation of random variables[edit]

Let U be a random variable that is uniformly distributed on the unit interval [0, 1]. Johnson's SU random variables can be generated from U as follows:

where Φ is the cumulative distribution function of the normal distribution.

Johnson's SB-distribution[edit]

N. L. Johnson [1] firstly proposes the transformation :

where .

Johnson's SB random variables can be generated from U as follows:

where Φ is the cumulative distribution function of the normal distribution. SB-distribution is convenient to Platykurtic distributions (Kurtosis).


References[edit]

  1. ^ a b Johnson, N. L. (1949). "Systems of Frequency Curves Generated by Methods of Translation". Biometrika. 36 (1/2): 149–176. doi:10.2307/2332539. JSTOR 2332539.
  2. ^ Johnson, N. L. (1949). "Bivariate Distributions Based on Simple Translation Systems". Biometrika. 36 (3/4): 297–304. doi:10.1093/biomet/36.3-4.297. JSTOR 2332669.
  3. ^ Johnson (1949) "Systems of Frequency Curves...", p. 158

Further reading[edit]

  • Hill, I. D.; Hill, R.; Holder, R. L. (1976). "Algorithm AS 99: Fitting Johnson Curves by Moments". Journal of the Royal Statistical Society. Series C (Applied Statistics). 25 (2).
  • Jones, M. C.; Pewsey, A. (2009). "Sinh-arcsinh distributions". Biometrika. 96 (4): 761. doi:10.1093/biomet/asp053.( Preprint)
  • Tuenter, Hans J. H. (November 2001). "An algorithm to determine the parameters of SU-curves in the Johnson system of probability distributions by moment matching". The Journal of Statistical Computation and Simulation. 70 (4): 325–347. doi:10.1080/00949650108812126.