KCNC1

From Wikipedia, the free encyclopedia
Jump to: navigation, search
KCNC1
Identifiers
Aliases KCNC1, KV3.1, KV4, NGK2, EPM7, potassium voltage-gated channel subfamily C member 1
External IDs MGI: 96667 HomoloGene: 68134 GeneCards: 3746
RNA expression pattern
PBB GE KCNC1 208477 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001112741
NM_004976

NM_001112739
NM_008421

RefSeq (protein)

NP_001106212.1
NP_004967.1

NP_032447.1

Location (UCSC) Chr 11: 17.73 – 17.78 Mb Chr 7: 46.4 – 46.44 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

Potassium voltage-gated channel subfamily C member 1 is a protein that in humans is encoded by the KCNC1 gene.[3][4][5]

The Shaker gene family of Drosophila encodes components of voltage-gated potassium channels and comprises four subfamilies. Based on sequence similarity, this gene is similar to one of these subfamilies, namely the Shaw subfamily. The protein encoded by this gene belongs to the delayed rectifier class of channel proteins and is an integral membrane protein that mediates the voltage-dependent potassium ion permeability of excitable membranes.[5]

Expression pattern[edit]

Kv3.1 and Kv3.2 channels are prominently expressed in neurons that fire at high frequency. Kv3.1 channels are prominently expressed in brain (cerebellum > globus pallidus, subthalamic nucleus, substantia nigra > reticular thalamic nuclei, cortical and hippocampal interneurons > inferior colliculi, cochlear and vestibular nuclei), and in retinal ganglion cells.[6][7][8]

Physiological role[edit]

Kv3.1/Kv3.2 conductance is necessary and kinetically optimized for high-frequency action potential generation.[7][9] Kv3.1 channels are important for the high-firing frequency of auditory and fast-spiking GABAergic interneurons, retinal ganglion cells; regulation of action potential duration in presynaptic terminals.[6][8]

Pharmacological properties[edit]

Kv3.1 currents in heterologous systems are highly sensitive to external tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (IC50 values are 0.2 mM and 29 μM respectively).[7][8] This can be useful in identifying native channels.[7] The overlapping sensitivity of potassium current to both 0.5 mM TEA and 30 μM 4-AP strongly suggest an action on Kv3.1 subunits.[10]

Transcript variants[edit]

There are two transcript variants of Kv3.1 gene: Kv3.1a and Kv3.1b. Kv3.1 isoforms differ only in their C-terminal sequence.[11]

Clinical significance[edit]

A missense mutation c.959G>A (p.Arg320His) in KCNC1 causes progressive myoclonus epilepsy.[12]

See also[edit]

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Ried T, Rudy B, Vega-Saenz de Miera E, Lau D, Ward DC, Sen K (Apr 1993). "Localization of a highly conserved human potassium channel gene (NGK2-KV4; KCNC1) to chromosome 11p15". Genomics. 15 (2): 405–11. doi:10.1006/geno.1993.1075. PMID 8449507. 
  4. ^ Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (Dec 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol Rev. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104. 
  5. ^ a b "Entrez Gene: KCNC1 potassium voltage-gated channel, Shaw-related subfamily, member 1". 
  6. ^ a b Kolodin YO (2008-04-27). "Ionic conductances underlying excitability in tonically firing retinal ganglion cells of adult rat". Retrieved 2008-10-20. 
  7. ^ a b c d Rudy B, McBain CJ (September 2001). "Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing". Trends in Neurosciences. 24 (9): 517–26. doi:10.1016/S0166-2236(00)01892-0. PMID 11506885. 
  8. ^ a b c Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacological Reviews. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104. 
  9. ^ Lien CC, Jonas P (March 2003). "Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons". Journal of Neuroscience. 23 (6): 2058–68. PMID 12657664. 
  10. ^ Dallas ML, Atkinson L, Milligan CJ, Morris NP, Lewis DI, Deuchars SA, Deuchars J (February 2005). "Localization and function of the Kv3.1b subunit in the rat medulla oblongata: focus on the nucleus tractus solitarii". The Journal of Physiology. 562 (Pt 3): 655–72. doi:10.1113/jphysiol.2004.073338. PMC 1665536free to read. PMID 15528247. 
  11. ^ Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E (April 1999). "Contributions of Kv3 channels to neuronal excitability". Annals of the New York Academy of Sciences. 868 (1): 304–43. doi:10.1111/j.1749-6632.1999.tb11295.x. PMID 10414303. 
  12. ^ Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, Joensuu T, Canafoglia L, Franceschetti S, Michelucci R, Markkinen S, Heron SE, Hildebrand MS, Andermann E, Andermann F, Gambardella A, Tinuper P, Licchetta L, Scheffer IE, Criscuolo C, Filla A, Ferlazzo E, Ahmad J, Ahmad A, Baykan B, Said E, Topcu M, Riguzzi P, King MD, Ozkara C, Andrade DM, Engelsen BA, Crespel A, Lindenau M, Lohmann E, Saletti V, Massano J, Privitera M, Espay AJ, Kauffmann B, Duchowny M, Møller RS, Straussberg R, Afawi Z, Ben-Zeev B, Samocha KE, Daly MJ, Petrou S, Lerche H, Palotie A, Lehesjoki AE (2015). "A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy". Nature Genetics. 47 (1): 39–46. doi:10.1038/ng.3144. PMID 25401298. 

Further reading[edit]

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.