From Wikipedia, the free encyclopedia
Available structures
PDBOrtholog search: PDBe RCSB
AliasesKDM1A, AOF2, BHC110, KDM1, LSD1, CPRF, lysine demethylase 1A
External IDsOMIM: 609132 MGI: 1196256 HomoloGene: 32240 GeneCards: KDM1A
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC)Chr 1: 23.02 – 23.08 MbChr 4: 136.28 – 136.33 Mb
PubMed search[3][4]
View/Edit HumanView/Edit Mouse

Lysine-specific histone demethylase 1A (LSD1) also known as lysine (K)-specific demethylase 1A (KDM1A) is a protein in humans that is encoded by the KDM1A gene.[5] LSD1 is a flavin-dependent monoamine oxidase, which can demethylate mono- and di-methylated lysines, specifically histone 3, lysines 4 and 9 (H3K4 and H3K9).[6] This enzyme can have roles critical in embryogenesis and tissue-specific differentiation, as well as oocyte growth.[7] KDM1A was the first histone demethylase to be discovered though more than 30 have been described.[8]


This gene encodes a nuclear protein containing a SWIRM domain, a FAD-binding motif, and an amine oxidase domain. This protein is a component of several histone deacetylase complexes, though it silences genes by functioning as a histone demethylase.


LSD1 (lysine-specific demethylase 1), also known as KDM1, is the first of several protein lysine demethylases discovered. Through a FAD-dependent oxidative reaction, LSD1 specifically removes histone H3K4me2 to H3K4me1 or H3K4me0. When forming a complex with androgen receptor (and possibly other nuclear hormone receptors), LSD1 changes its substrates to H3K9me2. It's now known LSD1 complex mediates a coordinated histone modification switch through enzymatic activities as well as histone modification readers in the complex.

Function of KDM1A gene can be effectively examined by siRNA knockdown based on an independent validation.[9]


KDM1A has many different binding partners, which may be necessary for its demethylation activity.[10] In acute myeloid leukemia (AML), GFI1B was definitively demonstrated to maintain an interaction with KDM1A that is necessary for the proliferation of the disease.[11] Evidence for the role of KDM1A interactions with nuclear GSK3β in promoting the progression of certain cancers is also present. High levels of nuclear GSK3β were found to promote the binding of KDM1A to the deubiquitinase, USP22, which prevent the breakdown of KDM1A and cause it to accumulate in higher levels. The accumulation of KDM1A has been correlated with tumor progression in certain cancers, including glioblastoma, leukemia, and osteosarcoma.[12]

Clinical significance[edit]

KDM1A appears to play an important role in the epigenetic "reprogramming" that occurs when sperm and egg come together to make a zygote.[13][14] Deletion of the gene for KDM1A can have effects on the growth and differentiation of embryonic stem cells.[15] Deletion in mouse embryos is lethal; embryos do not progress beyond Day 7.5.[16][17] KDM1A is also thought to play a role in cancer, as poorer outcomes can be correlated with higher expression of this gene.[18][19] Therefore, the inhibition of KDM1A may be a possible treatment for cancer.[20][21][22][23] KDM1A tends to be overexpressed in the tumor cells of certain cancers such as bladder, lung, and colorectal cancers. The specificity of KDM1A overexpression in these cancers creates the potential for targeted molecular therapy treatments, through the use of KDM1A-specific siRNAs.[24]


De novo mutations to KDM1A have been reported in three patients, each with developmental delays believed to be attributable in part to the mutations.[25][26] All documented mutations are missense substitutions.[27][28][29] One of the affected families has created a public website in order to identify further cases.[30]

See also[edit]


  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000004487 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000036940 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: Lysine (K)-specific demethylase 1A".
  6. ^ Rudolph T, Beuch S, Reuter G (August 2013). "Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin". (review). Biological Chemistry. 394 (8): 1019–28. doi:10.1515/hsz-2013-0119. PMID 23612539. S2CID 41459906.
  7. ^ Pedersen MT, Helin K (November 2010). "Histone demethylases in development and disease". (review). Trends in Cell Biology. 20 (11): 662–71. doi:10.1016/j.tcb.2010.08.011. PMID 20863703.
  8. ^ Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (December 2004). "Histone demethylation mediated by the nuclear amine oxidase homolog LSD1". Cell. 119 (7): 941–53. doi:10.1016/j.cell.2004.12.012. PMID 15620353. S2CID 10847230.
  9. ^ Munkácsy G, Sztupinszki Z, Herman P, Bán B, Pénzváltó Z, Szarvas N, Győrffy B (September 2016). "Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments". Molecular Therapy: Nucleic Acids. 5 (9): e366. doi:10.1038/mtna.2016.66. PMC 5056990. PMID 27673562.
  10. ^ Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L, Li R, Li Y, Zhang Y, Li Q, Yi X, Shang Y (August 2009). "LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer". Cell. 138 (4): 660–72. doi:10.1016/j.cell.2009.05.050. PMID 19703393.
  11. ^ Vinyard ME, Su C, Siegenfeld AP, Waterbury AL, Freedy AM, Gosavi PM, Park Y, Kwan EE, Senzer BD, Doench JG, Bauer DE, Pinello L, Liau BB (May 2019). "CRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AML". Nature Chemical Biology. 15 (5): 529–539. doi:10.1038/s41589-019-0263-0. PMC 7679026. PMID 30992567.
  12. ^ Zhou, A., Lin, K., Zhang, S., Chen, Y., Zhang, N., Xue, J., Wang, Z., Aldape, K., Xie, K., Woodgett, J., & Huang, S. (2016). Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature Cell Biology, 18(9), 954–966. https://doi.org/10.1038/ncb3396
  13. ^ Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño-Roa L, Liu T, Metzger E, Servant N, Barillot E, Chen CJ, Schüle R, Heard E (2016-02-02). "Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation". eLife. 5. doi:10.7554/eLife.08851. PMC 4829419. PMID 26836306.
  14. ^ "Disruptions to embryonic reprogramming alter adult mouse behavior". phys.org. Retrieved 2016-06-01.
  15. ^ Amente S, Lania L, Majello B (October 2013). "The histone LSD1 demethylase in stemness and cancer transcription programs". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1829 (10): 981–6. doi:10.1016/j.bbagrm.2013.05.002. PMID 23684752.
  16. ^ Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (January 2009). "The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation". Nature Genetics. 41 (1): 125–9. doi:10.1038/ng.268. PMID 19098913. S2CID 2010695.
  17. ^ Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, Liu F, Taylor H, Lozach J, Jayes FL, Korach KS, Glass CK, Fu XD, Rosenfeld MG (April 2007). "Opposing LSD1 complexes function in developmental gene activation and repression programmes". Nature. 446 (7138): 882–7. Bibcode:2007Natur.446..882W. doi:10.1038/nature05671. PMID 17392792. S2CID 4387240.
  18. ^ Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, Solleder G, Bastian PJ, Ellinger J, Metzger E, Schüle R, Buettner R (December 2006). "Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence". Cancer Research. 66 (23): 11341–7. doi:10.1158/0008-5472.CAN-06-1570. PMID 17145880.
  19. ^ Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R, Kirfel J (March 2010). "Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology". Carcinogenesis. 31 (3): 512–20. doi:10.1093/carcin/bgp324. PMID 20042638.
  20. ^ Stavropoulos P, Hoelz A (June 2007). "Lysine-specific demethylase 1 as a potential therapeutic target". (review). Expert Opinion on Therapeutic Targets. 11 (6): 809–20. doi:10.1517/14728222.11.6.809. PMID 17504018. S2CID 43678153.
  21. ^ Chen Y, Jie W, Yan W, Zhou K, Xiao Y (2012). "Lysine-specific histone demethylase 1 (LSD1): A potential molecular target for tumor therapy". (review). Critical Reviews in Eukaryotic Gene Expression. 22 (1): 53–9. doi:10.1615/critreveukargeneexpr.v22.i1.40. PMID 22339659.
  22. ^ Crea F, Sun L, Mai A, Chiang YT, Farrar WL, Danesi R, Helgason CD (2012). "The emerging role of histone lysine demethylases in prostate cancer". (review). Molecular Cancer. 11: 52. doi:10.1186/1476-4598-11-52. PMC 3441810. PMID 22867098.
  23. ^ Lynch JT, Harris WJ, Somervaille TC (December 2012). "LSD1 inhibition: a therapeutic strategy in cancer?". (review). Expert Opinion on Therapeutic Targets. 16 (12): 1239–49. doi:10.1517/14728222.2012.722206. PMID 22957941. S2CID 207485923.
  24. ^ Hayami, S., Kelly, J., Cho, H., Yoshimatsu, M., Unoki, M., Tsunoda, T., Field, H., Neal, D., Yamaue, H., Ponder, B., Nakamura, Y., & Hamamoto, R. (2011). Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. International Journal of Cancer, 128(3), 574–586. https://doi.org/10.1002/ijc.25349
  25. ^ "Needle in the genetic haystack: How a new UW website is helping families, scientists". The Seattle Times. 2016-05-07. Retrieved 2016-05-27.
  26. ^ "Stirrings of Hope for Families Isolated by Rarest of Genetic Conditions". KQED Future of You. Retrieved 2016-06-01.
  27. ^ Tunovic S, Barkovich J, Sherr EH, Slavotinek AM (July 2014). "De novo ANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome". American Journal of Medical Genetics. Part A. 164A (7): 1744–9. doi:10.1002/ajmg.a.36450. PMID 24838796. S2CID 24307221.
  28. ^ Chong JX, Yu JH, Lorentzen P, Park KM, Jamal SM, Tabor HK, Rauch A, Saenz MS, Boltshauser E, Patterson KE, Nickerson DA, Bamshad MJ (August 2016). "Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features". Genetics in Medicine. 18 (8): 788–95. doi:10.1038/gim.2015.161. PMC 4902791. PMID 26656649.
  29. ^ Pilotto S, Speranzini V, Marabelli C, Rusconi F, Toffolo E, Grillo B, Battaglioli E, Mattevi A (April 2016). "LSD1/KDM1A mutations associated to a newly described form of intellectual disability impair demethylase activity and binding to transcription factors". Human Molecular Genetics. 25 (12): 2578–2587. doi:10.1093/hmg/ddw120. PMID 27094131.
  30. ^ "Milo's Journey".

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.