Jump to content

KDM4C

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ProteinBoxBot (talk | contribs) at 06:03, 20 May 2016 (Updating to new gene infobox populated via wikidata). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

KDM4C
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesKDM4C, GASC1, JHDM3C, JMJD2C, TDRD14C, bA146B14.1, lysine demethylase 4C
External IDsOMIM: 605469; MGI: 1924054; HomoloGene: 41004; GeneCards: KDM4C; OMA:KDM4C - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001172095
NM_144787
NM_001356561

RefSeq (protein)

NP_001165566
NP_659036
NP_001343490

Location (UCSC)Chr 9: 6.72 – 7.18 MbChr 4: 74.16 – 74.32 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Lysine-specific demethylase 4C is an enzyme that in humans is encoded by the KDM4C gene.[5][6][7]

Function

This gene is a member of the Jumonji domain 2 (JMJD2) family and encodes a protein with one JmjC domain, one JmjN domain, two PHD-type zinc fingers, and two Tudor domains. This nuclear protein functions as a trimethylation-specific demethylase, converting specific trimethylated histone residues to the dimethylated form. Chromosomal aberrations and increased transcriptional expression of this gene are associated with esophageal squamous cell carcinoma.[7]

Model organisms

Model organisms have been used in the study of KDM4C function. A conditional knockout mouse line, called Kdm4ctm1a(KOMP)Wtsi[13][14] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[15][16][17]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[11][18] Twenty five tests were carried out on mutant mice and two significant abnormalities were observed.[11] Homozygous mutant males had decreased haematocrit and haemoglobin levels, while animals of both sex displayed an increase in sebaceous gland size.[11]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000107077Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000028397Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Oct 1998). "Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 5 (5): 277–86. doi:10.1093/dnares/5.5.277. PMID 9872452.
  6. ^ Katoh M, Katoh M (Jun 2004). "Identification and characterization of JMJD2 family genes in silico". International Journal of Oncology. 24 (6): 1623–8. doi:10.3892/ijo.25.3.759. PMID 15138608.
  7. ^ a b "Entrez Gene: JMJD2C jumonji domain containing 2C".
  8. ^ "Haematology data for Kdm4c". Wellcome Trust Sanger Institute.
  9. ^ "Salmonella infection data for Kdm4c". Wellcome Trust Sanger Institute.
  10. ^ "Citrobacter infection data for Kdm4c". Wellcome Trust Sanger Institute.
  11. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  12. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  13. ^ "International Knockout Mouse Consortium".
  14. ^ "Mouse Genome Informatics".
  15. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  16. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  17. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  18. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.{{cite journal}}: CS1 maint: unflagged free DOI (link)

Further reading

  • Yang ZQ, Imoto I, Fukuda Y, Pimkhaokham A, Shimada Y, Imamura M, Sugano S, Nakamura Y, Inazawa J (Sep 2000). "Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines". Cancer Research. 60 (17): 4735–9. PMID 10987278.
  • Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (Jan 2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Research. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y (May 2006). "Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases". Cell. 125 (3): 467–81. doi:10.1016/j.cell.2006.03.028. PMID 16603238.
  • Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K (Jul 2006). "The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3". Nature. 442 (7100): 307–11. doi:10.1038/nature04837. PMID 16732293.
  • Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R (Mar 2007). "Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression". Nature Cell Biology. 9 (3): 347–53. doi:10.1038/ncb1546. PMID 17277772.
  • Katoh Y, Katoh M (Aug 2007). "Comparative integromics on JMJD2A, JMJD2B and JMJD2C: preferential expression of JMJD2C in undifferentiated ES cells". International Journal of Molecular Medicine. 20 (2): 269–73. doi:10.3892/ijmm.20.2.269. PMID 17611647.
  • "KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism". Cell Reports. 2016. doi:10.1016/j.celrep.2015.12.053. {{cite journal}}: Unknown parameter |authors= ignored (help)