Kullback's inequality

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In information theory and statistics, Kullback's inequality is a lower bound on the Kullback–Leibler divergence expressed in terms of the large deviations rate function.[1] If P and Q are probability distributions on the real line, such that P is absolutely continuous with respect to Q, i.e. P<<Q, and whose first moments exist, then

where is the rate function, i.e. the convex conjugate of the cumulant-generating function, of , and is the first moment of

The Cramér–Rao bound is a corollary of this result.


Let P and Q be probability distributions (measures) on the real line, whose first moments exist, and such that P<<Q. Consider the natural exponential family of Q given by

for every measurable set A, where is the moment-generating function of Q. (Note that Q0=Q.) Then

By Gibbs' inequality we have so that

Simplifying the right side, we have, for every real θ where

where is the first moment, or mean, of P, and is called the cumulant-generating function. Taking the supremum completes the process of convex conjugation and yields the rate function:

Corollary: the Cramér–Rao bound[edit]

Start with Kullback's inequality[edit]

Let Xθ be a family of probability distributions on the real line indexed by the real parameter θ, and satisfying certain regularity conditions. Then

where is the convex conjugate of the cumulant-generating function of and is the first moment of

Left side[edit]

The left side of this inequality can be simplified as follows:

which is half the Fisher information of the parameter θ.

Right side[edit]

The right side of the inequality can be developed as follows:

This supremum is attained at a value of t=τ where the first derivative of the cumulant-generating function is but we have so that


Putting both sides back together[edit]

We have:

which can be rearranged as:

See also[edit]

Notes and references[edit]

  1. ^ Fuchs, Aimé; Letta, Giorgio (1970). L'inégalité de Kullback. Application à la théorie de l'estimation. Séminaire de probabilités. 4. Strasbourg. pp. 108–131.