Laboratory experiments of speciation

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
A simplification of an allopatric speciation experiment where two lines of fruit flies are raised on maltose and starch media

Laboratory experiments of speciation have been conducted for all four modes of speciation: allopatric, peripatric, parapatric, and sympatric; and various other processes involving speciation: hybridization, reinforcement, founder effects, among others. Most of the experiments have been done on flies, in particular Drosophila fruit flies.[1] However, more recent studies have tested yeasts, fungi, and even viruses.

It has been suggested that laboratory experiments are not conducive to vicariant speciation events (allopatric and peripatric) due to their small population sizes and limited generations.[2] Most estimates from studies of nature indicate that speciation takes hundreds of thousands to millions of years.[3] On the other hand, many species are thought to have speciated faster and more recently, such as the European flounders (Platichthys flesus) that spawn in pelagic and demersal zones—having allopatrically speciated in under 3000 generations.[4]

Table of experiments[edit]

Six publications have attempted to compile, review, and analyze the experimental research on speciation: John Ringo, David Wood, Robert Rockwell, and Harold Dowse in 1985;[5] William R. Rice and Ellen E. Hostert in 1993;[6] Ann-Britt Florin and Anders Ödeen in 2002;[2] Mark Kirkpatrick and Virginie Ravigné in 2002;[7] Jerry A. Coyne and H. Allen Orr in 2004;[1] and James D. Fry in 2009.[8] The table summarizes the studies and data reviewed in these publications. It also references several contemporary experiments and is non-exhaustive.

In the table, multiple numbers separated by semi-colons in the generations column indicate that multiple experiments were conducted. The replications (in parentheses) indicates the number of populations used in the experiments—i.e. how many times the experiment was replicated. Various types of selection have been imposed on experimental populations and are indicated by the selection type column. Negative or positive results of each experiment are provided by the reproductive isolation column. Pre-zygotic reproductive isolation means that the reproducing individuals in the populations were unable to produce offspring (effectively a positive result). Post-zygotic isolation means that the reproducing individuals were able to produce offspring but they were either sterile or inviable (a positive result as well). Negative results are indicated by "none"—that is, the experiments did not result in reproductive isolation.

Laboratory experiments of speciation[1][6][7][2][8]
Species Trait Generations (replications) [duration] Tested Selection type Studied genetic drift Reproductive isolation Reference Year
Drosophila melanogaster Escape response 18 Vicariant, reinforcement, parapatric/

sympatric

Indirect; divergent Yes Pre-zygotic Grant & Mettler [9] 1969
D. melanogaster Locomotion 112 Vicariant Indirect; divergent No Pre-zygotic Burnet & Connolly [10] 1974
D. melanogaster Temperature, humidity 70–130 Vicariant Indirect; divergent Yes Pre-zygotic Kilias et al.[11] 1980
D. melanogaster DDT adaptation 600 [25 years, +15 years] Vicariant Direct No Pre-zygotic Boake et al.[12] 2003
D. melanogaster 17, 9, 9, 1, 1, 7, 7, 7, 7 Vicariant; parapatric/

sympatric

Direct, divergent Pre-zygotic in vicariance; none with gene flow Barker & Karlsson [13] 1974
D. melanogaster 40; 50 Reinforcement Direct; divergent Pre-zygotic Crossley [14] 1974
D. melanogaster Locomotion 45 Vicariant Direct; divergent No None van Dijken & Scharloo [15][16] 1979
D. melanogaster Reinforcement Direct; divergent Pre-zygotic Wallace [17] 1953
D. melanogaster 36; 31 Reinforcement Direct; divergent Pre-zygotic Knight [18] 1956
D. melanogaster EDTA adaptation 25, 25, 25, 14 Semi-allopatric, reinforcement Indirect; divergent No Post-zygotic Robertson [19][20] 1966
D. melanogaster 25 (8) Vicariant; reinforcement; parapatric; sympatric Direct None Hostert [21] 1997
D. melanogaster Abdominal chaeta

number

21-31 Vicariant Direct Yes None Santibanez & Waddington [22] 1958
D. melanogaster Sternopleural chaeta number 32 Vicariant, reinforcement, parapatric/

sympatric

Direct No None Barker & Cummins [23] 1969
D. melanogaster Phototaxis, geotaxis 20 Vicariant No None Markow [24][25] 1975; 1981
D. melanogaster Peripatric Yes Rundle et al.[26] 1998
D. melanogaster Vicariant; peripatric Yes Mooers et al.[27] 1999
D. melanogaster 12 Reinforcement Divergent Pre-zygotic Thoday & Gibson [28] 1962
D. melanogaster None Thoday & Gibson [29][30] 1970; 1971
D. melanogaster 16 Reinforcement Indirect None Spiess & Wilke [31] 1954
D. melanogaster Reinforcement Direct; divergent Pre-zygotic Ehrman [32][33][34][35] 1971; 1973; 1979; 1983
D. melanogaster Sternopleural chaeta number 5; 27; 27; 1; 1; 1; 1; 1 Parapatric/

sympatric

None Chabora [36] 1968
D. melanogaster None Scharloo [37] 1967
D. melanogaster 1, 1 Coyne & Grant [38] 1972
D. melanogaster 25 Rice [39] 1985
D. melanogaster 25 Disruptive Pre-zygotic Rice & Salt [40] 1988
D. melanogaster 35; 35 Sympatric Pre-zygotic Rice & Salt [41] 1990
D. melanogaster NaCl and CuSO4 levels in food [3 years in allopatry, 1 in sympatry] Allopatric; reinforcement; sympatric Pre-zygotic in allopatry, none in sympatry Wallace [42] 1982
D. melanogaster Reinforcement Ehrman et al.[43] 1991
D. melanogaster Reinforcement Fukatami & Moriwaki[44] 1970
Drosophila simulans Scutellar bristles, development speed, wing width; desiccation resistance, fecundity, ethanol resistance; courtship display, re-mating speed, lek behavior; pupation height, clumped egg laying, general activity [3 years] Vicariant; peripatric Yes Post-zygotic Ringo et al.[5] 1985
Drosophila paulistorum 131; 131 Reinforcement Direct Pre-zygotic Dobzhansky et al.[45] 1976
D. paulistorum [5 years] Vicariant Dobzhansky and Pavlovsky [46] 1966
Drosophila willistoni pH adaptation 34–122 Vicariant Indirect; divergent No Pre-zygotic Kalisz & Cordeiro [47] 1980
Drosophila pseudoobscura Carbohydrate source 12 Vicariant Indirect Yes Pre-zygotic Dodd [48] 1989
D. pseudoobscura Temperature adaptation 25–60 Vicariant Direct Ehrman [49][50][51][52][53] 1964;

1969

D. pseudoobscura Phototaxis, geotaxis 5–11 Vicariant Indirect No Pre-zygotic del Solar[54] 1966
D. pseudoobscura Vicariant; peripatric Pre-zygotic Powell [55][56] 1978; 1985
D. pseudoobscura Peripatric; vicariant Yes Galiana et al.[57] 1993
D. pseudoobscura Temperature photoperiod; food 37 (78) [33–34 months] Vicariant Divergent Yes None Rundle [58] 2003
D. pseudoobscura &

Drosophila persimilis

22; 16; 9 Reinforcement Direct; divergent Pre-zygotic Koopman [59] 1950
D. pseudoobscura &

D. persimilis

18 (4) Direct Pre-zygotic Kessler [60] 1966
Drosophila mojavensis 12 Direct Pre-zygotic Koepfer [61] 1987
D. mojavensis Development time 13 Divergent Yes None Etges [62] 1998
Drosophila adiastola Peripatric Yes Pre-zygotic Arita & Kaneshiro [63] 1974
Drosophila silvestris Peripatric Yes Ahearn [64] 1980
Musca domestica Geotaxis 38 Vicariant Indirect No Pre-zygotic Soans et al.[65] 1974
M. domestica Geotaxis 16 Vicariant Direct; divergent No Pre-zygotic Hurd & Eisenburg [66] 1975
M. domestica Peripatric Yes Meffert & Bryant [67] 1991
M. domestica Regan et al.[68] 2003
Bactrocera cucurbitae Development time 40–51 Divergent Yes Pre-zygotic Miyatake & Shimizu [69] 1999
Zea mays 6; 6 Reinforcement Direct; divergent Pre-zygotic Paterniani [70] 1969
Drosophila grimshawi Peripatric Jones, Widemo, & Arrendal[71] N/A
Saccharomyces cerevisiae Leu & Murry [72] 2006
D. melanogaster Reinforcement Harper & Lambert [73] 1983
Tribolium castaneum Pupal weight 15 (6) Disruptive Halliburton & Gall [74] 1983
D. melanogaster Geotaxis Divergent Lofdahl et al.[75] 1992
D. pseudoobscura [10 years] Moya et al.[76] 1995
Neurospora Divergent Dettman et al.[77] 2008
S. cerevisiae 500 Divergent Dettman et al.[78] 2007
Sepsis cynipsea 35 Martin & Hosken [79] 2003
D. melanogaster Wigby & Chapman [80] 2006
D. pseudoobscura Sexual conflict 48-52 (4; 4; 4) Bacigalupe et al.[81] 2007
D. serrata Rundle et al.[82] 2005
Drosophila serrata & D. birchii Mate recognition 9 (3; 3) Reinforcement Natural Pre-zygotic Higgie et al.[83] 2000
Enterobacteria phage λ Escherichia coli receptor exploitation 35 cylces (6) Vicariant, sympatric Pre-zygotic Meyer et al.[84] 2016
Tetranychus urticae Resistance to host plant toxin Overmeer [85] 1966
T. urticae Resistance to host plant toxin Fry [86] 1999
Helianthus annus × H. petiolaris and H. anomalus Hybrid Rieseburg et al.[87] 1996
S. cerevisiae Greig et al.[88] 2002
D. melanogaster Life history Ghosh & Joshi [89] 2012
Drosophila subobscura Mate behavior Bárbaro et al.[90] 2015
Digital organisms ~42,000; ~850 (20) Ecological Post-zygotic Anderson & Harmon [91] 2014
Schizosaccharomyces pombe Complete reproductive isolation Seike et al.[92] 2015
D. pseudoobscura Courtship song 130 Debelle et al.[93] 2014
Callosobruchus maculatus 40 (16) Debelle et al.[94] 2010

See also[edit]

References[edit]

  1. ^ a b c Coyne, Jerry A.; Orr, H. Allen (2004), Speciation, Sinauer Associates, pp. 1–545, ISBN 0-87893-091-4
  2. ^ a b c Florin, Ann-Britt & Ödeen, Anders (2002), "Laboratory environments are not conducive for allopatric speciation", Journal of Evolutionary Biology, 15 (1): 10–19, doi:10.1046/j.1420-9101.2002.00356.x
  3. ^ Coyne, Jerry A.; Orr, H. Allen (1997), ""Patterns of Speciation in Drosophila" Revisited", Evolution, 51 (1): 295–303, doi:10.1111/j.1558-5646.1997.tb02412.x, PMID 28568795
  4. ^ Momigliano, Paolo; Jokinen, Henri; Fraimout, Antoine; Florin, Ann-Britt; Norkko, Alf & Merilä, Juha (2017), "Extraordinarily rapid speciation in a marine fish" (PDF), PNAS, 114 (23): 6074–6079, doi:10.1073/pnas.1615109114
  5. ^ a b Ringo, John; Wood, David; Rockwell, Robert & Dowse, Harold (1985), "An Experiment Testing Two Hypotheses of Speciation", The American Naturalist, 126 (5): 642–661
  6. ^ a b Rice, William R. & Hostert, Ellen E. (1993), "Laboratory Experiments on Speciation: What Have We Learned in 40 Years?", Evolution, 47 (6): 1637–1653, doi:10.1111/j.1558-5646.1993.tb01257.x, PMID 28568007
  7. ^ a b Kirkpatrick, Mark & Ravigné, Virginie (2002), "Speciation by Natural and Sexual Selection: Models and Experiments", The American Naturalist, 159, doi:10.1086/338370, PMID 18707367
  8. ^ a b Fry, James D. (2009). Laboratory Experiments on Speciation. In Garland, Theodore & Rose, Michael R. "Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments". Pp. 631–656. doi:10.1525/california/9780520247666.003.0020
  9. ^ Grant, B. S. & Mettler, L. E. (1969), "Disruptive and stabilizing selection on the" escape" behavior of Drosophila melanogaster", Genetics, 62 (3): 625–637, PMC 1212303
  10. ^ Burnet, B. & Connolly, K. (1974). Activity and sexual behavior in Drosophila melanogaster. In Abeelen, J. H. V. F. (eds). The Genetics of Behaviour. North-Holland, Amsterdam. Pp. 201–258.
  11. ^ Kilias, G., Alahiotis, S. N., & Pelecanos, M. (1980), "A Multifactorial Genetic Investigation of Speciation Theory Using Drosophila melanogaster", Evolution, 34 (4): 730–737, doi:10.2307/2408027
  12. ^ Boake, C. R. B., Mcdonald, K., Maitra, S., Ganguly, R. (2003), "Forty years of solitude: life-history divergence and behavioural isolation between laboratory lines of Drosophila melanogaster", Journal of Evolutionary Biology, 16 (1): 83–90, doi:10.1046/j.1420-9101.2003.00505.x, PMID 14635883
  13. ^ Barker, J. S. F. & Karlsson, L. J. E. (1974), "Effects of population size and selection intensity on responses to disruptive selection in Drosophila melanogaster", Genetics, 78 (2): 715–735, doi:10.2307/2407287
  14. ^ Crossley, Stella A. (1974), "Changes in Mating Behavior Produced by Selection for Ethological Isolation Between Ebony and Vestigial Mutants of Drosophila melanogaster", Evolution, 28 (4): 631–647, doi:10.1111/j.1558-5646.1974.tb00795.x, PMID 28564833
  15. ^ van Dijken, F. R. & Scharloo, W. (1979), "Divergent selection on locomotor activity in Drosophila melanogaster. I. Selection response", Behavior Genetics, 9 (6): 543–553, doi:10.1007/BF01067350
  16. ^ van Dijken, F. R. & Scharloo, W. (1979), "Divergent selection on locomotor activity in Drosophila melanogaster. II. Test for reproductive isolation between selected lines", Behavior Genetics, 9 (6): 555–561, doi:10.1007/BF01067351
  17. ^ Wallace, B. (1953), "Genetic divergence of isolated populations of Drosophila melanogaster", Proceedings of the Ninth International Congress of Genetics, 9: 761–764
  18. ^ Knight, G. R., Robertson, Alan, & Waddington, C. H. (1956), "Selection for sexual isolation within a species", Evolution, 10 (1): 14–22, doi:10.1111/j.1558-5646.1956.tb02825.x
  19. ^ Robertson, Forbes W. (1966), "A test of sexual isolation in Drosophila", Genetical research, 8 (2): 181–187
  20. ^ Robertson, Forbes W. (1966), "The ecological genetics of growth in Drosophila 8. Adaptation to a New Diet", Genetical research, 8 (2): 165–179
  21. ^ Hostert, Ellen E. (1997), "Reinforcement: a new perspective on an old controversy", Evolution, 51: 697–702, doi:10.1111/j.1558-5646.1997.tb03653.x, PMID 28568598
  22. ^ Koref Santibañez, S. & Waddington, C. H. (1958), "The origin of sexual isolation between different lines within a species", Evolution, 12 (4): 485–493, doi:10.2307/2405959
  23. ^ Barker, J. S. F. & Cummins, L. J. (1969), "The effect of selection for sternopleural bristle number in mating behaviour in Drosophila melanogaster", Genetics, 61 (3): 713–719, PMID 17248436
  24. ^ Markow, Therese Ann (1975), "A genetic analysis of phototactic behavior in Drosophila melanogaster", Genetics, 79 (3): 527–534, PMC 1213291
  25. ^ Markow, Therese Ann (1981), "Mating preferences are not predictive of the direction of evolution in experimental populations of Drosophila", Science, 213 (4514): 1405–1407, doi:10.1126/science.213.4514.1405
  26. ^ Rundle, H. D., Mooers, Arne Ø. & Whitlock, Michael C. (1998), "Single founder-flush events and the evolution of reproductive isolation", Evolution, 52: 1850–1855, doi:10.1111/j.1558-5646.1998.tb02263.x, PMID 28565304
  27. ^ Mooers, Arne Ø., Rundle, Howard D. & Whitlock, Michael C. (1999), "The effects of selection and bottlenecks on male mating success in peripheral isolates", American Naturalist, 153 (4): 437–444, doi:10.1086/303186
  28. ^ Thoday, J. M. & Gibson, J. B. (1962), "Isolation by disruptive selection", Nature, 193: 1164–1166, PMID 13920720
  29. ^ Thoday, J. M. & Gibson, J. B. (1970), "The probability of isolation by disruptive selection", Nature, 104 (937): 219–230
  30. ^ Scharloo, W. (1971), "Reproductive isolation by disruptive selection: Did it occur?", American Naturalist, 105 (941): 83–86
  31. ^ Spiess, E. B. & Wilke, C. M. (1984), "Still another attempt to achieve assortive mating by disruptive selection in Drosophila", Evolution, 38 (3): 505–515, doi:10.2307/2408700
  32. ^ Ehrman, Lee (1971), "Natural selection and the origin of reproductive isolation", American Naturalist, 105: 479–483
  33. ^ Ehrman, Lee (1973), "More on natural selection and the origin of reproductive isolation", American Naturalist, 107 (954): 318–319, doi:10.1086/282835
  34. ^ Ehrman, Lee (1979), "Still more on natural selection and the origin of reproductive isolation", American Naturalist, 113 (1): 148–150, doi:10.1086/283371
  35. ^ Ehrman, Lee (1983), "Fourth report on natural selection for the origin of reproductive isolation", American Naturalist, 121 (2): 290–293
  36. ^ Chabora, Alice J. (1968), "Disruptive selection for sternopleural chaeta number in various strains of Drosophila melanogaster", American Naturalist, 102 (928): 525–532, doi:10.1086/282565
  37. ^ Scharloo, W., Hoogmoed, M. S. & Kuile, A. T. (1967), "Stabilizing and disruptive selection on a mutant character in Drosophila. I. The phenotypic variance and its components.", Genetics, 56 (4): 709–726, PMC 1211648
  38. ^ Coyne, Jerry A. & and Grant, Bruce (1972), "Disruptive selection on I-maze activity in Drosophila melanogaster", Genetics, 71 (1): 185–188, PMC 1212770
  39. ^ Rice, W. R. (1985), "Disruptive selection on habitat preference and the evolution of reproductive isolation: an exploratory experiment", Evolution, 39 (3): 645–656, doi:10.1111/j.1558-5646.1985.tb00401.x, PMID 28561974
  40. ^ Rice, William R. & Salt, George, W. (1988), "Speciation via disruptive selection on habitat preference", American Naturalist, 131 (6): 911–917
  41. ^ Rice, William R. & Salt, George, W. (1990), "The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence", Evolution, 44 (5): 1140–1152, doi:10.2307/2409278
  42. ^ Wallace, B. (1982), "Drosophila melanogaster populations selected for resistances to NaCl and CuSO4 in both allopatry and sympatry", Journal of Heredity, 73 (1): 35–42, PMID 6802898
  43. ^ Ehrman, Lee, White, Marney A. & Wallace, B. (1991). A long-term study involving Drosophila melanogaster and toxic media. In Hecht, M. K., Wallace, B., & Maclntyre, R. J. (eds). Evolutionary biology, vol. 25. Plenum Press, New York. Pp. 175–209
  44. ^ Fukatami, A & Moriwaki, D. (1970), "Selection for sexual isolation in Drosophila melanogaster by a modification of Koopman's method", The Japanese Journal of Genetics, 45 (3): 193–204, doi:10.1266/jjg.45.193
  45. ^ Dobzhansky, Theodosius; Pavlovsky, O. & Powell, J. R. (1976), "Partially Successful Attempt to Enhance Reproductive Isolation Between Semispecies of Drosophila paulistorum", Evolution, 30 (2): 201–212, doi:10.2307/2407696
  46. ^ Dobzhansky, Theodosius & Pavlovsky, O. (1966), "Spontaneous origin of an incipient species in the Drosophila paulistorum complex", Proceedings of the National Academy of Sciences, 55 (4): 723–733, PMC 224220, PMID 5219677
  47. ^ de Oliveira, Alice Kalisz & Cordeiro, Antonio Rodrigues (1980), "Adaptation of Drosophila willistoni experimental populations to extreme pH medium", Heredity, 44: 123–130, doi:10.1038/hdy.1980.11
  48. ^ Dodd, Diane M. B. (1989), "Reproductive Isolation as a Consequence of Adaptive Divergence in Drosophila pseudoobscura", Evolution, 43 (6): 1308–1311, doi:10.2307/2409365
  49. ^ Ehrman, Lee (1964), "Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura 1. Rudiments of sexual isolation", Genetical Research, 5: 150–157, doi:10.1017/S0016672300001099
  50. ^ Mouradael, K. (1965), "Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura 2. Longevity", Genetical Research: 139–146, PMID 14297592
  51. ^ Anderson, Wyatt, W. (1966), "Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura 3. Divergence in Body Size", Genetical Research, 7 (2): 255–266, doi:10.1017/S0016672300009666
  52. ^ Kitagawa, Osamu (1967), "Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura: IV. Relative viability", Genetical Research, 10 (7): 303–312, doi:10.1017/S001667230001106X
  53. ^ Ehrman, Lee (1969), "Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura. 5. A further study of rudiments of sexual isolation", American Midland Naturalist, 82 (1): 272–276, doi:10.2307/2423835
  54. ^ del Solar, Eduardo (1966), "Sexual isolation caused by selection for positive and negative phototaxis and geotaxis in Drosophila pseudoobscura", Proceedings of the National Academy of Sciences, 65 (2): 484–487, PMC 224398
  55. ^ Powell, Jeffrey R. (1978), "The Founder-Flush Speciation Theory: An Experimental Approach", Evolution, 32 (3): 465–474, doi:10.2307/2407714
  56. ^ Dodd, Diane M. B. & Powell, Jeffrey R. (1985), "Founder-Flush Speciation: An Update of Experimental Results with Drosophila", Evolution, 39 (6): 1388–1392, doi:10.1111/j.1558-5646.1985.tb05704.x, PMID 28564258
  57. ^ Galiana, Augustí, Moya, Andres & Ayala, Fransisco J. (1993), "Founder-flush speciation in Drosophila pseudoobscura: a large scale experiment", Evolution, 47 (2): 432–444, doi:10.1111/j.1558-5646.1993.tb02104.x
  58. ^ Rundle, Howard D. (2003), "Divergent environments and population bottlenecks fail to generate premating isolation in Drosophila pseudoobscura", Evolution, 57 (11): 2557–2565
  59. ^ Koopman, Karl F. (1950), "Natural Selection for Reproductive Isolation Between Drosophila pseudoobscura and Drosophila persimilis", Evolution, 4 (2): 135–148, doi:10.2307/2405390
  60. ^ Kessler, Seymour (1966), "Selection For and Against Ethological Isolation Between Drosophila pseudoobscura and Drosophila persimilis", Evolution, 20 (4): 634–645, doi:10.2307/2406597
  61. ^ Koepfer, H. Roberta (1987), "Selection for Sexual Isolation Between Geographic Forms of Drosophila mojavensis. I Interactions Between the Selected Forms", Evolution, 41 (1): 37–48, doi:10.2307/2408971
  62. ^ Etges, W. J. (1998), "Premating isolation is determined by larval rearing substrates in cactophilis Drosophila mojavensis. IV. Correlated responses in behavioral isolation to artificial selection on a life-history trait", American Naturalist, 152 (1): 129–144, doi:10.1086/286154, PMID 18811406
  63. ^ Arita, Lorna H. & Kaneshiro, Kenneth Y. (1979), "Ethological Isolation Between Two Stocks of Drosophila Adiastola Hardy", Hawaiian Entomological Society, 23 (1): 31–34
  64. ^ Ahearn, J. N. (1980), "Evolution of behavioral reproductive isolation in a laboratory stock of Drosophila silvestris", Experientia, 36 (1): 63–64, doi:10.1007/BF02003975
  65. ^ Soans, A. Benedict; Pimentel, David; & Soans, Joyce S. (1974), "Evolution of Reproductive Isolation in Allopatric and Sympatric Populations", The American Naturalist, 108 (959): 117–124
  66. ^ Hurd, L. E. & Eisenberg, Robert M. (1975), "Divergent Selection for Geotactic Response and Evolution of Reproductive Isolation in Sympatric and Allopatric Populations of Houseflies", The American Naturalist, 109 (967): 353–358
  67. ^ Meffert, L. M. & Bryant, E. H. (1991), "Mating propensity and courtship behavior in serially bottlenecked lines of the housefly", Evolution, 45: 293–306, doi:10.1111/j.1558-5646.1991.tb04404.x, PMID 28567864
  68. ^ Regan, J. L.; Meffert, L. M.; & Bryant, E. H. (2003), "A direct experimental test of founder-flush effects on the evolutionary potential for assortative mating", Journal of Evolutionary Biology, 16 (2): 302–312, PMID 14635869
  69. ^ Miyatake, Takahisa & Shimizu, Toru (1999), "Genetic correlations between life-history and behavioral traits can cause reproductive isolation", Evolution, 53 (1): 201–208, doi:10.2307/2640932
  70. ^ Paterniani, E. (1969), "Selection for Reproductive Isolation between Two Populations of Maize, Zea mays L.", Evolution, 23 (4): 534–547, doi:10.2307/2406851
  71. ^ Ödeen, Anders & Florin, Ann-Britt (2002), "Sexual selection and peripatric speciation: the Kaneshiro model revisited", Journal of Evolutionary Biology, 15 (2): 301–306, doi:10.1046/j.1420-9101.2002.00378.x
  72. ^ Leu, J. Y. & Murray, A. W. (2006), "Experimental evolution of mating discrimination in budding yeast", Current Biology, 16 (3): 280–286, doi:10.1016/j.cub.2005.12.028, PMID 16461281
  73. ^ Harper, A. A. & Lambert, D. M. (1983), "The population genetics of reinforcing selection", Genetica, 62 (1): 15–23
  74. ^ Halliburton, Richard & Gall, G. A. E. (1981), "Disruptive selection and assortative mating in Tribolium castaneum", Evolution, 35 (5): 829–843, doi:10.1111/j.1558-5646.1981.tb04947.x, PMID 28581046
  75. ^ Lofdahl, L. Katharine; Hu, Dan; Ehrman, Lee; Hirsch, Jerry; Skoog, Linda (1992), "Incipient reproductive isolation and evolution in laboratory Drosophila melanogaster selected for geotaxis", Animal Behaviour, 44 (4): 783–786, doi:10.1016/S0003-3472(05)80307-0
  76. ^ Moya, A.; Galiana, A.; & Ayala, F. J. (1995), "Founder-effect speciation theory: failure of experimental corroboration", Proceedings of the National Academy of Sciences, 92 (9): 3983–3986, PMC 42086, PMID 7732017
  77. ^ Dettman, Jeremy R.; Anderson, James B. & Kohn, Linda M. (2008), "Divergent adaptation promotes reproductive isolation among experimental populations of the filamentous fungus Neurospora", BMC Evolutionary Biology, 8 (35), doi:10.1186/1471-2148-8-35, PMC 2270261, PMID 18237415
  78. ^ Dettman, Jeremy R.; Sirjusingh, Caroline; Kohn, Linda M. & Anderson, James B. (2007), "Incipient speciation by divergent adaptation and antagonistic epistasis in yeast", Nature, 447 (7144): 585–588, doi:10.1038/nature05856, PMID 17538619
  79. ^ Martin, Oliver Y. & Hosken, David J. (2003), "The evolution of reproductive isolation through sexual conflict", Nature, 423 (6943): 979–982, doi:10.1038/nature01752, PMID 12827200
  80. ^ Wigby, S. & Chapman, T. (2006), "No evidence that experimental manipulation of sexual conflict drives premating reproductive isolation in Drosophila melanogaster", Journal of Evolutionary Biology, 19 (4): 1033–1039, doi:10.1111/j.1420-9101.2006.01107.x, PMID 16780504
  81. ^ Bacigalupe, L. D.; Crudgington, H. S.; Hunter, F.; Moore, A. J.; & Snook, R. R. (2007), "Sexual conflict does not drive reproductive isolation in experimental populations of Drosophila pseudoobscura", Journal of Evolutionary Biology, 20 (5): 1763–1771, doi:10.1111/j.1420-9101.2007.01389.x, PMID 17714294
  82. ^ Rundle, Howard D.; Chenoweth, Steve F.; Doughty, Paul & Blows, Mark W. (2005), "Divergent selection and the evolution of signal traits and mating preferences", PLoS Biology, 3 (11), doi:10.1371/journal.pbio.0030368, PMC 1262626
  83. ^ Higgie, Megan; Chenoweth, Steve F. & Blows, Mark W. (2000), "Natural selection and the reinforcement of mate recognition", Science, 290 (5491): 519–521, doi:10.1126/science.290.5491.519, PMID 11039933
  84. ^ Meyer, Justin R.; Dobias, Devin T.; Medina, Sarah J.; Servilio, Lisa; Gupta, Animesh; & Lenski, Richard E. (2016), "Ecological speciation of bacteriophage lambda in allopatry and sympatry", Science, 354 (6317): 1301–1304, doi:10.1126/science.aai8446
  85. ^ Overmeer, W. P. J. (1966), "Intersterility as a Consequence of Insecticide Selections in Tetranychus urticae Koch (Acari: Tetranychidae)", Nature, 209 (321), doi:10.1038/209321a0
  86. ^ Fry, James D. (1999), "The role of adaptation to host plants in the evolution of reproductive isolation: Negative evidence from Tetranychus urticae Koch", Experimental & Applied Acarology, 23 (5): 379–387
  87. ^ Rieseberg, L. H.; Sinervo B.; Linder, C. R.; Ungerer, M.C.; & Arias, D. M. (1996), "Role of Gene Interactions in Hybrid Speciation: Evidence from Ancient and Experimental Hybrids", Science, 272 (5262): 741–745, doi:10.1126/science.272.5262.741, PMID 8662570
  88. ^ Greig, Duncan; Louis, Edward J.; Borts, Rhona H.; & Travisano, Michael (2002), "Hybrid speciation in experimental populations of yeast", Science, 298 (5599): 1773–1775, doi:10.1126/science.1076374, PMID 12459586
  89. ^ Ghosh, Shampa M. & Joshi, Amitabh (2012), "Evolution of reproductive isolation as a by-product of divergent life-history evolution in laboratory populations of Drosophila melanogaster", Ecology and Evolution, 2 (12): 3214–3226, doi:10.1002/ece3.413
  90. ^ Bárbaro, Margarida; Mira, Mário S.; Fragata, Inês; Simões, Pedro; Lima, Margarida; Lopes-Cunha, Miguel; Kellen, Bárbara; Santos, Josiane; Varela, Susana A. M.; Matos, Margarida; & Magalhães, Sara (2015), "Evolution of mating behavior between two populations adapting to common environmental conditions", Ecology and Evolution, 5 (8): 1609–1617, doi:10.1002/ece3.1454
  91. ^ Anderson, Carlos J. R. & Harmon, Luke (2014), "Ecological and Mutation-Order Speciation in Digital Organisms", The American Naturalist, 183 (2): 257–269, doi:10.1086/674359, PMID 24464199
  92. ^ Seike, Taisuke; Nakamura, Taro; & Shimoda, Chikashi (2015), "Molecular coevolution of a sex pheromone and its receptor triggers reproductive isolation in Schizosaccharomyces pombe", PNAS, 112 (14): 4405–4410, doi:10.1073/pnas.1501661112, PMC 4394278
  93. ^ Debelle, Allan; Ritchie, Michael G. & Snook, Rhonda R. (2014), "Evolution of divergent female mating preference in response to experimental sexual selection", Evolution, 68 (9): 2524–2533, doi:10.1111/evo.12473
  94. ^ Fricke, C; Andersson, C. & Arnqvist, G. (2010), "Natural selection hampers divergence of reproductive traits in a seed beetle", Journal of Evolutionary Biology, 23 (9): 1857–1867, doi:10.1111/j.1420-9101.2010.02050.x