Lalande 21185

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Lalande 21185
Ursa Major IAU.svg
Cercle rouge 100%.svg

The red circle shows the approximate location of Lalande 21185 in Ursa Major
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Ursa Major
Right ascension 11h 03m 20.19400s[1]
Declination +35° 58′ 11.5682″[1]
Apparent magnitude (V) 7.520[2]
Spectral type M2V[3]
Apparent magnitude (B) 8.960 ± 0.007[2]
Apparent magnitude (V) 7.520 ± 0.009[2]
Apparent magnitude (R) ~6.6[3]
Apparent magnitude (I) ~5.8[3]
Apparent magnitude (J) 4.203 ±0.242[3]
Apparent magnitude (H) 3.640 ±0.202[3]
Apparent magnitude (K) 3.254 ±0.306[3]
U−B color index +1.074[2]
B−V color index +1.444[2]
Variable type BY[4]
Radial velocity (Rv) −85.6 ± 1.0[5] km/s
Proper motion (μ) RA: −580.27[1] mas/yr
Dec.: −4765.85[1] mas/yr
Parallax (π) 392.64 ± 0.67[1] mas
Distance 8.31 ± 0.01 ly
(2.547 ± 0.004 pc)
Absolute magnitude (MV) 10.48[6]
Mass 0.46[7] M
Radius 0.393 ± 0.008[8] R
Luminosity (bolometric) 0.021[9] L
Luminosity (visual, LV) 0.0055[nb 1] L
Surface gravity (log g) 4.90[10] cgs
Temperature 3,828[10] K
Metallicity [Fe/H] −0.20[10] dex
Rotational velocity (v sin i) 58[11] km/s
Age 5–10 Gyr
Other designations
BD+36 2147, G 119-052, Gliese 411, HD 95735, HIP 54035, LFT 756, LHS 37, LTT 12960, MCC 594, PLX 2576, SAO 62377, NLTT 26105, NSV 18593, IRAS 11005+3615.[3]
Database references

Lalande 21185 is a star in the constellation of Ursa Major, relevant for being the brightest red dwarf observable in the northern hemisphere (only AX Microscopii and Lacaille 9352, in the southern hemisphere, are brighter).[12][13] Despite this, and although relatively close by, it is (as all red dwarves) very dim, being only magnitude 7.5 in visible light and thus too dim to be seen with the unaided eye. The star is visible through a small telescope or binoculars.[14]

At approximately 8.31 light-years (2.55 parsecs)[1] away it is one of the nearest stars to the Solar System; only the Alpha Centauri system, Barnard's Star, and Wolf 359 and the brown dwarfs Luhman 16 and WISE 0855−0714 are known to be closer.[7] Because of its proximity it is a frequent subject for astronomical surveys and other research and thus is known by numerous other designations. Research papers most commonly use the designations BD+36 2147, Gliese 411, and HD 95735 to refer to this star.[3] In approximately 19,900 years Lalande 21185 will be at its closest distance of about 4.65 ly (1.43 pc) from the Sun.[15][16]


Distances of the nearest stars from 20,000 years ago until 80,000 years in the future

The celestial coordinates of Lalande 21185 were first published in 1801 by French astronomer Jérôme Lalande of the Paris Observatory in the star catalog Histoire Céleste Française. The catalog sequence numbers for majority of the observed stars, including this one, were introduced in its 1847 edition by Francis Baily.[17][18] Today this star, along with a few others, is still commonly referred to by its Lalande catalog number.[19]

In May 1857, Friedrich Wilhelm Argelander discovered high proper motion of the star. Sometimes it was called "Argelander's second star".[20][21][22] (The "first Argelander's star" is Groombridge 1830, whose high proper motion also was discovered by Argelander earlier—in 1842).

Friedrich August Theodor Winnecke is reported to have made the first measurement of the star's parallax of 0.511 arc seconds in 1857–58 and thus first identifying Lalande 21185 as the second-closest-known star to the Sun, after the Alpha Centauri system.[21] Since that time better measurements have placed the star further away, but it was still the second-closest-known star system until the discovery of two dim red dwarfs, Wolf 359 and Barnard's Star, in the early 20th century using astrophotography.[23]


Lalande 21185 is a typical type-M main-sequence star (red dwarf) with about 46% of the mass of the Sun[7] and is much cooler than the Sun at 3,828 K. It is intrinsically dim with an absolute magnitude of 10.48, emitting most of its energy in the infrared.[6] Lalande 21185 is a high-proper-motion star moving at about 5 arc seconds a year in an orbit perpendicular to the plane of the Milky Way.[citation needed] The proportion of elements other than hydrogen and helium is estimated based on the ratio of iron to hydrogen in the star when compared to the Sun. The logarithm of this ratio is −0.20, indicating that the proportion of iron is about 10−0.20, or 63% of the Sun. The surface gravity of this relatively compact star is approximately 65 times greater than the gravity at Earth's surface (log g = 4.8 cgs),[24] which is more than twice the surface gravity of our Sun.

Lalande 21185 is listed as a BY Draconis type variable star in the General Catalogue of Variable Stars. It is identified by the variable star designation NSV 18593.[4] Several star catalogs, including SIMBAD, also classify it as a flare star. This conclusion is not supported by the primary reference these catalogs all use. The observations made in this reference show that it is rather quiet in comparison to other stars of its variable type.[25]

Lalande 21185 emits X-rays.[26]

Claims of a planetary system[edit]

In 1951 Dutch astronomer Peter van de Kamp and his student Sarah Lippincott claimed the astrometric detection of a planetary system using photographic plates taken with the 24-inch (610 mm) refractor telescope at Swarthmore College's Sproul Observatory.[27] In 1960, Sarah Lippincott repeated the 1951 claim of a planetary system, only this time having different parameters. She used the original photographic plates and new plates taken with the same telescope.[28] Photographic plates from this observatory, taken at the same time, were used by Van de Kamp for his erroneous claim of a planetary system for Barnard's Star. The photographic plates made with the Sproul 24-inch refractor and used for these and other studies were later shown to be flawed.[29] The claims of planetary companions for both stars were refuted in 1974 with astrometric measurements made by George Gatewood of the Allegheny Observatory.[30]

In 1996 the same George Gatewood prominently announced at an AAS meeting[31] and to the popular press[32] the discovery of multiple planets in this system, detected by astrometry. The initial report of a planet was based on a very delicate analysis of the star's position over the years, which suggested reflex orbital motion due to one or more companions. Gatewood claimed that such companions would usually appear more than 0.8 arc second from the red dwarf itself. Though, a paper by Gatewood published only a few years earlier[33] and subsequent searches by others, using coronagraphs and multifilter techniques to reduce the scattered-light problems from the star, did not positively identify any such companions,[34] and so his claim remains unconfirmed and is now in doubt. However, recently published data from the HIRES system at the Keck Observatory on Mauna Kea supports the existence of a much closer in planet candidate with an orbital period of just 9.8693±0.0016 days and a minimum mass of 3.8 M.[35]

The Lalande 21185 planetary system[35]
(in order from star)
Mass Semimajor axis
Orbital period
Eccentricity Inclination Radius
(planet candidate) ≥3.8 M 0.0695[nb 2] 9.8693±0.0016

Refining planetary boundaries[edit]

This star's measured radial velocity is so constant that astronomer and planet hunter Geoff Marcy uses it as a perfect example of "normal" red dwarf stability levels.[36] The negative results of this and other surveys do not preclude the presence of a planetary system entirely, but they do set an upper boundary on the mass of any planets that might be present. The detection limit by current technology for this star system is a little less than the mass of the planet Jupiter.[citation needed] New Earth- and space-based instruments will certainly lower this limit further and possibly detect any small planets that may be present.

The habitable zone for this star, defined as the locations where liquid water could be present on an Earth-like planet, is at a radius of 0.11–0.24 AU, where 1 AU is the average distance from the Earth to the Sun.[37]

See also[edit]


  1. ^ a b c d e f van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics, 474 (2): 653–664, arXiv:0708.1752Freely accessible, Bibcode:2007A&A...474..653V, doi:10.1051/0004-6361:20078357 
  2. ^ a b c d e Oja, T. (August 1985), "Photoelectric photometry of stars near the north Galactic pole. II", Astronomy and Astrophysics Supplement Series, 61: 331–339, Bibcode:1985A&AS...61..331O 
  3. ^ a b c d e f g h "SIMBAD query result: HD 95735 -- Flare Star". Centre de données astronomiques de Strasbourg. Retrieved 2009-05-29. 
  4. ^ a b "NSV 18593". General Catalogue of Variable Stars, Sternberg Astronomical Institute, Moscow, Russia. Retrieved 2009-09-09. 
  5. ^ Holmberg, J.; Nordström, B.; Andersen, J. (July 2009), "The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics", Astronomy and Astrophysics, 501 (3): 941–947, arXiv:0811.3982Freely accessible, Bibcode:2009A&A...501..941H, doi:10.1051/0004-6361/200811191 
  6. ^ a b Johnson, H. M.; Wright, C. D. (November 1983), "Predicted infrared brightness of stars within 25 parsecs of the Sun", Astrophysical Journal Supplement Series, Lockheed Independent Research Program and Lockheed Independent Development Program, 53: 643–711, Bibcode:1983ApJS...53..643J, doi:10.1086/190905 
  7. ^ a b c "The 100 nearest star systems". Research Consortium On Nearby Stars. January 1, 2009. Retrieved 2009-09-09. 
  8. ^ Demory, B.-O.; et al. (October 2009), "Mass-radius relation of low and very low-mass stars revisited with the VLTI", Astronomy and Astrophysics, 505 (1): 205–215, arXiv:0906.0602Freely accessible, Bibcode:2009A&A...505..205D, doi:10.1051/0004-6361/200911976 
  9. ^ Newton, Elisabeth R.; et al. (February 2015), "An Empirical Calibration to Estimate Cool Dwarf Fundamental Parameters from H-band Spectra", The Astrophysical Journal, 800 (2): 20, arXiv:1412.2758Freely accessible, Bibcode:2015ApJ...800...85N, doi:10.1088/0004-637X/800/2/85, 85 
  10. ^ a b c Cenarro, A. J.; et al. (January 2007), "Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters", Monthly Notices of the Royal Astronomical Society, 374 (2): 664–690, arXiv:astro-ph/0611618Freely accessible, Bibcode:2007MNRAS.374..664C, doi:10.1111/j.1365-2966.2006.11196.x 
  11. ^ Uesugi, Akira; Fukuda, Ichiro (1970), "Catalogue of rotational velocities of the stars", Contributions from the Institute of Astrophysics and Kwasan Observatory, University of Kyoto, 
  12. ^ Dickinson, David (2015-12-23). "14 Red Dwarf Stars to View with Backyard Telescopes". Universe Today. Retrieved 2016-12-04. 
  13. ^ Croswell, Ken (July 2002). "The Brightest Red Dwarf". Retrieved 2016-12-04. 
  14. ^ Sherrod, P. Clay; Koed, Thomas L. (2003), A Complete Manual of Amateur Astronomy: Tools and Techniques for Astronomical Observations, Astronomy Series, Courier Dover Publications, p. 9, ISBN 0486428206 
  15. ^ García-Sánchez, J.; et al. (2001), "Stellar encounters with the solar system", Astronomy and Astrophysics, 379 (2): 634–659, Bibcode:2001A&A...379..634G, doi:10.1051/0004-6361:20011330 
  16. ^ "Annotations on HD 95735 object". Centre de données astronomiques de Strasbourg. Retrieved 2010-04-14. 
  17. ^ Baily, Francis; Lalande, Joseph Jérôme Le Français de (1847). "Catalogue of those stars in the Histoire Celeste Francaise of Jerome Delalande, for which tables of reduction to the epoch 1800 habe been published by Prof. Schumacher". London (1847). Google Books id: oc0-AAAAcAAJ.
  18. ^ Baily, F. (1847). A catalogue of those stars in the "Histoire Celeste Française" of J. De Lalande for which tables of reduction to the session define format EPOCH1 = 1800 have been published by Professor Schumacher. British Association for the Advancement of Science, London. Bibcode:1950Lalan1847....0B. 
  19. ^ Joseph-Jérôme de Lalande Archived July 21, 2009, at the Wayback Machine.
  20. ^ Lynn, W. T. (1872). "On the Parallax and Proper Motion of Lalande 21185". Monthly Notices of the Royal Astronomical Society. 33: 52–54. Bibcode:1872MNRAS..33...52L. doi:10.1093/mnras/33.1.52. 
  21. ^ a b Winnecke, A. (1858). "Über die Parallaxe des zweiten Argelander'schen Sterns, von Herrn Prof. Winnecke". Astronomische Nachrichten. 48 (1147): 289–292. Bibcode:1858AN.....48..289W. doi:10.1002/asna.18580481903. 
  22. ^ Winnecke, Friedrich August Theodor (1872). "Bestimmung der parallaxe des zweiten Argelander-'schen sternes aus messungen AM heliometer der sternwarte zu Bonn in den jahren 1857–1858". Leipzig, W. Engelmann. 
  23. ^ Russell, H. N. (June 1905). "The parallax of Lalande 21185 and γ Virginis from photographs taken at the Cambridge Observatory". Monthly Notices of the Royal Astronomical Society. 65: 787–800. Bibcode:1905MNRAS..65..787R. doi:10.1093/mnras/65.8.787. 
  24. ^ Cayrel de Strobel, G.; et al., "A catalogue of Fe/H determinations - 1991 edition", Astronomy and Astrophysics Supplement Series, 95 (2): 273–336, Bibcode:1992A&AS...95..273C, ISSN 0365-0138 
  25. ^ Bopp, B. W.; Noah, P. V.; Klimke, A.; Africano, J. (October 1, 1981). "Discovery and observation of BY Draconis variables". Astrophysical Journal. 249 (1): 210–217. Bibcode:1981ApJ...249..210B. doi:10.1086/159277. 
  26. ^ Schmitt JHMM; Fleming TA; Giampapa MS (September 1995). "The X-Ray View of the Low-Mass Stars in the Solar Neighborhood". Ap J. 450 (9): 392–400. Bibcode:1995ApJ...450..392S. doi:10.1086/176149. 
  27. ^ van de Kamp, P.; Lippincott, S. L (April 1951). "Astrometric study of Lalande 21185". The Astronomical Journal. 56: 49–50. Bibcode:1951AJ.....56...49V. doi:10.1086/106503. 
  28. ^ Lippincott, Sarah Lee (August 1960). "The Unseen Companion of the Fourth Nearest Star, Lalande 21185". The Astronomical Journal. 65: 350. Bibcode:1960AJ.....65..349L. doi:10.1086/108260. 
  29. ^ John L. Hershey (June 1973). "Astrometric analysis of the field of AC +65 6955 from plates taken with the Sproul 24-inch refractor". Astronomical Journal. 78 (5): 421–425. Bibcode:1973AJ.....78..421H. doi:10.1086/111436. 
  30. ^ Gatewood, G. (January 1974). "An astrometric study of Lalande 21185". The Astronomical Journal. 79 (1): 52. Bibcode:1974AJ.....79...52G. doi:10.1086/111530. 
  31. ^ Gatewood, G. (May 1996). "Lalande 21185". Bulletin of the American Astronomical Society. American Astronomical Society, 188th AAS Meeting, #40.11;. 28: 885. Bibcode:1996AAS...188.4011G. 
  32. ^ John Wilford (1996-06-12). "Data Seem to Show a Solar System Nearly in the Neighborhood". The New York Times. p. 1. Retrieved 2009-05-29. 
  33. ^ Gatewood; Stein, John; De Jonge, Joost K.; Persinger, Timothy; Reiland, Thomas; Stephenson, Bruce (September 1992). "Multichannel astrometric photometer and photographic astrometric studies in the regions of Lalande 21185, BD 56°2966, and HR 4784". The Astronomical Journal. 104 (3): 1237–1247. Bibcode:1992AJ....104.1237G. doi:10.1086/116313. 
  34. ^ Henry; Baliunas, Sallie L.; Donahue, Robert A.; Fekel, Francis C.; Soon, Willie (March 1, 2000). "Photometric and Ca II H and K Spectroscopic Variations in Nearby Sun-like Stars with Planets. III" (PDF). The Astrophysical Journal. 531 (1): 415–437. Bibcode:2000ApJ...531..415H. doi:10.1086/308466. 
  35. ^ a b c Butler, R. Paul; Vogt, Steven S.; et al. (12 February 2017). "The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey". arXiv:1702.03571Freely accessible [astro-ph]. 
  36. ^ Marcy; Lindsay, Victoria; Wilson, Karen (June 1987). "Radial velocities of M dwarf stars" (PDF). Publications of the Astronomical Society of the Pacific. 99: 490–496. Bibcode:1987PASP...99..490M. doi:10.1086/132010. 
  37. ^ Cantrell, Justin R.; et al. (October 2013), "The Solar Neighborhood XXIX: The Habitable Real Estate of Our Nearest Stellar Neighbors", The Astronomical Journal, 146 (4): 99, arXiv:1307.7038Freely accessible, Bibcode:2013AJ....146...99C, doi:10.1088/0004-6256/146/4/99 


  1. ^ From knowing the absolute visual magnitude of Lalande 21185, , and the absolute visual magnitude of the Sun, = , the visual luminosity of Lalande 21185 can therefore be calculated: = 0.005495 Lv
  2. ^ Kepler's Third Law, assuming a circular orbit gives . The mass and period are known from the paper,[35] so the semimajor axis can be calculated using: .

External links[edit]

Coordinates: Sky map 11h 03m 20s, +35° 58′ 12″