# Lauricella hypergeometric series

In 1893 Giuseppe Lauricella defined and studied four hypergeometric series FA, FB, FC, FD of three variables. They are (Lauricella 1893):

${\displaystyle F_{A}^{(3)}(a,b_{1},b_{2},b_{3},c_{1},c_{2},c_{3};x_{1},x_{2},x_{3})=\sum _{i_{1},i_{2},i_{3}=0}^{\infty }{\frac {(a)_{i_{1}+i_{2}+i_{3}}(b_{1})_{i_{1}}(b_{2})_{i_{2}}(b_{3})_{i_{3}}}{(c_{1})_{i_{1}}(c_{2})_{i_{2}}(c_{3})_{i_{3}}\,i_{1}!\,i_{2}!\,i_{3}!}}\,x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}}}$

for |x1| + |x2| + |x3| < 1 and

${\displaystyle F_{B}^{(3)}(a_{1},a_{2},a_{3},b_{1},b_{2},b_{3},c;x_{1},x_{2},x_{3})=\sum _{i_{1},i_{2},i_{3}=0}^{\infty }{\frac {(a_{1})_{i_{1}}(a_{2})_{i_{2}}(a_{3})_{i_{3}}(b_{1})_{i_{1}}(b_{2})_{i_{2}}(b_{3})_{i_{3}}}{(c)_{i_{1}+i_{2}+i_{3}}\,i_{1}!\,i_{2}!\,i_{3}!}}\,x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}}}$

for |x1| < 1, |x2| < 1, |x3| < 1 and

${\displaystyle F_{C}^{(3)}(a,b,c_{1},c_{2},c_{3};x_{1},x_{2},x_{3})=\sum _{i_{1},i_{2},i_{3}=0}^{\infty }{\frac {(a)_{i_{1}+i_{2}+i_{3}}(b)_{i_{1}+i_{2}+i_{3}}}{(c_{1})_{i_{1}}(c_{2})_{i_{2}}(c_{3})_{i_{3}}\,i_{1}!\,i_{2}!\,i_{3}!}}\,x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}}}$

for |x1|½ + |x2|½ + |x3|½ < 1 and

${\displaystyle F_{D}^{(3)}(a,b_{1},b_{2},b_{3},c;x_{1},x_{2},x_{3})=\sum _{i_{1},i_{2},i_{3}=0}^{\infty }{\frac {(a)_{i_{1}+i_{2}+i_{3}}(b_{1})_{i_{1}}(b_{2})_{i_{2}}(b_{3})_{i_{3}}}{(c)_{i_{1}+i_{2}+i_{3}}\,i_{1}!\,i_{2}!\,i_{3}!}}\,x_{1}^{i_{1}}x_{2}^{i_{2}}x_{3}^{i_{3}}}$

for |x1| < 1, |x2| < 1, |x3| < 1. Here the Pochhammer symbol (q)i indicates the i-th rising factorial of q, i.e.

${\displaystyle (q)_{i}=q\,(q+1)\cdots (q+i-1)={\frac {\Gamma (q+i)}{\Gamma (q)}}~,}$

where the second equality is true for all complex ${\displaystyle q}$ except ${\displaystyle q=0,-1,-2,\ldots }$.

These functions can be extended to other values of the variables x1, x2, x3 by means of analytic continuation.

Lauricella also indicated the existence of ten other hypergeometric functions of three variables. These were named FE, FF, ..., FT and studied by Shanti Saran in 1954 (Saran 1954). There are therefore a total of 14 Lauricella–Saran hypergeometric functions.

## Generalization to n variables

These functions can be straightforwardly extended to n variables. One writes for example

${\displaystyle F_{A}^{(n)}(a,b_{1},\ldots ,b_{n},c_{1},\ldots ,c_{n};x_{1},\ldots ,x_{n})=\sum _{i_{1},\ldots ,i_{n}=0}^{\infty }{\frac {(a)_{i_{1}+\ldots +i_{n}}(b_{1})_{i_{1}}\cdots (b_{n})_{i_{n}}}{(c_{1})_{i_{1}}\cdots (c_{n})_{i_{n}}\,i_{1}!\cdots \,i_{n}!}}\,x_{1}^{i_{1}}\cdots x_{n}^{i_{n}}~,}$

where |x1| + ... + |xn| < 1. These generalized series too are sometimes referred to as Lauricella functions.

When n = 2, the Lauricella functions correspond to the Appell hypergeometric series of two variables:

${\displaystyle F_{A}^{(2)}\equiv F_{2},\quad F_{B}^{(2)}\equiv F_{3},\quad F_{C}^{(2)}\equiv F_{4},\quad F_{D}^{(2)}\equiv F_{1}.}$

When n = 1, all four functions reduce to the Gauss hypergeometric function:

${\displaystyle F_{A}^{(1)}(a,b,c;x)\equiv F_{B}^{(1)}(a,b,c;x)\equiv F_{C}^{(1)}(a,b,c;x)\equiv F_{D}^{(1)}(a,b,c;x)\equiv {_{2}}F_{1}(a,b;c;x).}$

## Integral representation of FD

In analogy with Appell's function F1, Lauricella's FD can be written as a one-dimensional Euler-type integral for any number n of variables:

${\displaystyle F_{D}^{(n)}(a,b_{1},\ldots ,b_{n},c;x_{1},\ldots ,x_{n})={\frac {\Gamma (c)}{\Gamma (a)\Gamma (c-a)}}\int _{0}^{1}t^{a-1}(1-t)^{c-a-1}(1-x_{1}t)^{-b_{1}}\cdots (1-x_{n}t)^{-b_{n}}\,\mathrm {d} t,\qquad \operatorname {Re} c>\operatorname {Re} a>0~.}$

This representation can be easily verified by means of Taylor expansion of the integrand, followed by termwise integration. The representation implies that the incomplete elliptic integral Π is a special case of Lauricella's function FD with three variables:

${\displaystyle \Pi (n,\phi ,k)=\int _{0}^{\phi }{\frac {\mathrm {d} \theta }{(1-n\sin ^{2}\theta ){\sqrt {1-k^{2}\sin ^{2}\theta }}}}=\sin(\phi )\,F_{D}^{(3)}({\tfrac {1}{2}},1,{\tfrac {1}{2}},{\tfrac {1}{2}},{\tfrac {3}{2}};n\sin ^{2}\phi ,\sin ^{2}\phi ,k^{2}\sin ^{2}\phi ),\qquad |\operatorname {Re} \phi |<{\frac {\pi }{2}}~.}$