# Le Cam's theorem

(Redirected from Le Cam's Inequality)

In probability theory, Le Cam's theorem, named after Lucien le Cam (1924 – 2000), states the following.[1][2][3]

Suppose:

• X1, ..., Xn are independent random variables, each with a Bernoulli distribution (i.e., equal to either 0 or 1), not necessarily identically distributed.
• Pr(Xi = 1) = pi for i = 1, 2, 3, ...
• ${\displaystyle \lambda _{n}=p_{1}+\cdots +p_{n}.}$
• ${\displaystyle S_{n}=X_{1}+\cdots +X_{n}.}$ (i.e. ${\displaystyle S_{n}}$ follows a Poisson binomial distribution)

Then

${\displaystyle \sum _{k=0}^{\infty }\left|\Pr(S_{n}=k)-{\lambda _{n}^{k}e^{-\lambda _{n}} \over k!}\right|<2\sum _{i=1}^{n}p_{i}^{2}.}$

In other words, the sum has approximately a Poisson distribution and the above inequality bounds the approximation error in terms of the total variation distance.

By setting pi = λn/n, we see that this generalizes the usual Poisson limit theorem.

When ${\displaystyle \lambda _{n}}$ is large a better bound is possible: ${\displaystyle \sum _{k=0}^{\infty }\left|\Pr(S_{n}=k)-{\lambda _{n}^{k}e^{-\lambda _{n}} \over k!}\right|<2(1\wedge {\frac {1}{\lambda }}_{n})\sum _{i=1}^{n}p_{i}^{2}.}$ [4]

It is also possible to weaken the independence requirement.[4]

## References

1. ^ Le Cam, L. (1960). "An Approximation Theorem for the Poisson Binomial Distribution". Pacific Journal of Mathematics. 10 (4): 1181–1197. MR 0142174. Zbl 0118.33601. doi:10.2140/pjm.1960.10.1181. Retrieved 2009-05-13.
2. ^ Le Cam, L. (1963). "On the Distribution of Sums of Independent Random Variables". In Jerzy Neyman; Lucien le Cam. Bernoulli, Bayes, Laplace: Proceedings of an International Research Seminar. New York: Springer-Verlag. pp. 179–202. MR 0199871.
3. ^ Steele, J. M. (1994). "Le Cam's Inequality and Poisson Approximations". The American Mathematical Monthly. 101 (1): 48–54. JSTOR 2325124. doi:10.2307/2325124.
4. ^ a b den Hollander, Frank. Probability Theory: the Coupling Method.