Leap year starting on Thursday

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A leap year starting on Thursday is any year with 366 days (i.e. it includes 29 February) that begins on Thursday, 1 January, and ends on Friday, 31 December. Its dominical letter hence is DC. The most recent year of such kind was 2004 and the next one will be 2032 in the Gregorian calendar[1] or, likewise, 1988 and 2016 in the obsolete Julian calendar.

Calendars[edit]

Calendar for any leap year starting on Thursday, presented as common in many English-speaking areas

01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29  
 
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31  
 
01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31  
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30  
 
01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30  
 
01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31  
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 


ISO 8601-conformant calendar with week numbers for any leap year starting on Thursday (dominical letter DC)

01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
 
01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31  
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31  
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30  
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31  
 
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30  
 
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30  
 
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31  
 

Applicable years[edit]

Gregorian Calendar[edit]

The 15 types of years repeat in a 400-year cycle (20871 weeks) in the Gregorian calendar. 43 common years per cycle or exactly 3.25 % start on a Thursday. For this kind of year, the corresponding ISO year has 53 weeks, and the ISO week 10 (which begins March 1) and all subsequent ISO weeks occur earlier than in all other years. That means, moveable holidays may occur one calendar week later than otherwise possible, e.g. Gregorian Easter Sunday in week 17 about once per leap cycle.

Gregorian leap years starting on Thursday[1]
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
17th century 1604 1632 1660 1688
18th century 1728 1756 1784
19th century 1824 1852 1880
20th century 1920 1948 1976
21st century 2004 2032 2060 2088

Julian Calendar[edit]

Like all leap year types, the one starting with 1 January on a Thursday occurs exactly once in a 28-year cycle in the Julian calendar, i.e. in 3.57 percent of years.

Sequence of year types in the Julian calendar
Year 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
DL G F E DC B* A G FE D C B AG F E D CB A G F ED C B A GF E D C BA
1 Jan Mo Tu We Th Sa Su Mo Tu Th Fr Sa Su Tu We Th Fr Su Mo Tu We Fr Sa Su Mo We Th Fr Sa
31 Dec Fr We Mo Sa Th Tu Su

The final two digits of Julian years repeat after 700 years, i.e. 25 cycles.

Julian leap years starting on Thursday
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
15th century 1428 1456 1484
16th century 1512 1540 1568 1596
17th century 1624 1652 1680
18th century 1708 1736 1764 1792
19th century 1820 1848 1876
20th century 1904 1932 1960 1988
21st century 2016 2044 2072 2100

References[edit]

  1. ^ a b Robert van Gent (2005). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. 
  2. ^ Robert H. van Gent (2005). "Mathematics of the ISO calendar". Department of Mathematics at Utrecht University.