Lee Albert Rubel

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Lee Albert Rubel
Born (1928-12-01)December 1, 1928
Died March 25, 1995(1995-03-25) (aged 66)
Nationality United States
Fields Mathematics
Institutions University of Illinois at Urbana-Champaign
Alma mater University of Wisconsin-Madison
Thesis Entire Functions and Ostrowski Sequences (1954)
Doctoral advisor Robert Creighton Buck
Known for Analog computing

Lee Albert Rubel ((1928-12-01)December 1, 1928 – March 25, 1995(1995-03-25)) was a mathematician, and Doctor of Mathematics renowned for his contributions to analog computing.[1][2][3]

Career[edit]

Originally from New York, he held a Doctorate of Mathematics degree from University of Wisconsin-Madison, and was professor of Mathematics at University of Illinois at Urbana-Champaign since 1954.[4]

He wrote for several scientific publications like the Complex Variables and Elliptic Equations International Journal, the Constructive Approximation mathematical journal, the American Mathematical Monthly, the Journal of Differential Equations, the Journal of Approximation Theory, the Journal of Symbolic Logic, the Journal of the Australian Mathematical Society. He also collaborated to the Functional Analysis periodical, the Tohoku Mathematical, the Mathematical Proceedings of The Cambridge Philosophical Society, the Franklin Institute-engineering and Applied Mathematics, Combinatorica, Israel Journal of Mathematics, and Journal of Theoretical Neurobiology, among others.

He was a member of the American Mathematical Society for 43 years,[5] which published many of his papers in the Proceedings of the AMS.

He died on March 25, 1995 in Urbana, Illinois.[1]

Academic publications[edit]

  • A. A. Danielyan; L. A. Rubel (1999). "Erratum Uniform Approximation by Entire Functions That Are All Bounded on a Given Set". Constructive Approximation. 15 (1): 153–153. doi:10.1007/s003659900102. 
  • A. A. Danielyan; L. A. Rubel (1998). "Uniform Approximation by Entire Functions That Are All Bounded on a Given Set". Constructive Approximation. 14 (4): 469–473. doi:10.1007/s003659900085. 
  • Rodney G. Downey; Zoltán Füredi; Carl Jockusch Jr.; Lee A. Rubel (1998). "Difference Sets and Computability Theory". Annals of Pure and Applied Logic. 93 (1-3): 63–72. doi:10.1016/S0168-0072(97)00053-5. 
  • Chris Miller; Lee A. Rubel (1997). "An extension of hölder’s theorem on the gamma function". Israel Journal of Mathematics. 97 (1): 183–187. doi:10.1007/BF02774035. 
  • Karl Dilcher; Lee A. Rubel (1996). "Zeros of Sections of Divergent Power Series". Journal of Mathematical Analysis and Applications. 198 (1): 98–110. doi:10.1006/jmaa.1996.0070. 
  • Lee A. Rubel (1996). "Uniform Approximation by Rational Functions Which All Satisfy the Same Algebraic Differential Equation". Journal of Approximation Theory. 84 (2): 123–128. doi:10.1006/jath.1996.0009. 
  • Rubel, L.A.; Colliander, J.E. (1996). Entire and Meromorphic Functions. Universitext Series. Springer. ISBN 9780387945101. LCCN 95044887. 
  • Zoltán Füredi; Lee A. Rubel; f Carl G. Jockusch Jr. (1996). "Difference Sets and Inverting the Difference Operator". Combinatorica. 16 (1): 87–106. doi:10.1007/BF01300128. 
  • W. K. Hayman; Lee A. Rubel (1995). "Unavoidable systems of functions". Mathematical Proceedings of The Cambridge Philosophical Society. 117 (02). doi:10.1017/S0305004100073175. 
  • J. Johnson; G. M. Reinhart; L. A. Rubel (1995). "Some Counterexamples to Separation of Variables". Journal of Differential Equations. 121 (1): 42–66. doi:10.1006/jdeq.1995.1121. 
  • R. Alexander; C. E. Blair; L. A. Rubel (1995). "Approximate version of Cauchy's functional equation". 
  • Alan L. Horwitz; Lee A. Rubel (1994). "When is the composition of two power series even?". Journal of the Australian Mathematical Society. 56 (03). doi:10.1017/S1446788700035588. 
  • L. A. Rubel (1993). "The Extended Analog Computer". Advances in Applied Mathematics. 14 (1): 39–50. doi:10.1006/aama.1993.1003. 
  • C. WardHenson; Lee A. Rubel; Lou Van Den Dries; Michael Singer (1993). "On the integer zeros of exponential polynomials". Complex Variables and Elliptic Equations. Taylor and Francis. 23 (3): 201–211. doi:10.1080/17476939308814685. 
  • Lee A. Rubel (1992). "On the Ring of Differentially-Algebraic Entire Functions". Journal of Symbolic Logic. 57 (2): 449–451. doi:10.2307/2275279. 
  • L. A. Rubel (1991). "The differential equation ? = 0 revisited". Journal of Differential Equations. 91 (1): 78–87. doi:10.1016/0022-0396(91)90132-S. 
  • Lee A. Rubel (1991). "Quotients of solutions of linear algebraic differential equations". Proceedings of the American Mathematical Society. 113 (3): 747–747. doi:10.1090/S0002-9939-1991-1052579-1. 
  • László Lempert; Lee A. Rubel (1991). "An independence result in several complex variables". Proceedings of the American Mathematical Society. 113 (4): 1055–1055. doi:10.1090/S0002-9939-1991-1052577-8. 
  • A Horwitz; L Rubel (1990). "Differentially cyclic functions". Journal of Differential Equations. 88 (1): 87–99. doi:10.1016/0022-0396(90)90110-B. 
  • Lee A. Rubel (1989). "The editor's corner: summability theory: a neglected tool of analysis". American Mathematical Monthly. 96 (5): 421–423. ISSN 0002-9890. doi:10.2307/2325147. 
  • Lee A. Rubel (1989). "Digital Simulation of Analog Computation and Church's Thesis". Journal of Symbolic Logic. 54 (3): 1011–1017. doi:10.2307/2274761. 
  • C Ward Henson; Lee A. Rubel; Michael F. Singer (1989). "Algebraic properties of the ring of general exponential polynomials". Complex Variables and Elliptic Equations. Taylor and Francis. 13 (1): 1–20. doi:10.1080/17476938908814374. 
  • Lee A. Rubel (1989). "A survey of transcendentally transcendental functions". American Mathematical Monthly. 96 (9): 777–788. ISSN 0002-9890. doi:10.2307/2324840. 
  • A. L. Horwitz; L. A. Rubel (1988). "Two theorems on inverse interpolation". Rocky Mountain Journal of Mathematics. 18 (3): 645–654. doi:10.1216/RMJ-1988-18-3-645. 
  • L. A. Rubel (1988). "Some mathematical limitations of the general-purpose analog computer". Advances in Applied Mathematics. 9 (1): 22–34. doi:10.1016/0196-8858(88)90004-8. 
  • John Mitchell; Lee A. Rubel (1988). "Every smooth map of {Euclidean} space into itself is an expansion followed by a contraction". American Mathematical Monthly. 95 (8): 713–716. ISSN 0002-9890. doi:10.2307/2322250. 
  • J. Brian Conrey; L. A. Rubel (1988). "Erratum to "On the Location of the Zeros of the Derivative of a Polynomial"". Proceedings of the American Mathematical Society. 104 (3). doi:10.2307/2046830. 
  • Leonard Lipshitz; Lee A. Rubel (1988). "Corrigendum to "A Differentially Algebraic Replacement Theorem, and Analog Computability"". Proceedings of the American Mathematical Society. 104 (2). doi:10.2307/2047030. 
  • Lee A. Rubel; Michael F. Singer (1988). "Autonomous functions". Journal of Differential Equations. 75 (2): 354–370. doi:10.1016/0022-0396(88)90143-X. 
  • Lee A. Rubel (1988). "An unsolvable Cousin problem". Proceedings of the American Mathematical Society. 104 (2): 410–410. doi:10.1090/S0002-9939-1988-0962806-4. 
  • Alan L. Horwitz; Lee A. Rubel (1987). "The space of totally bounded analytic functions". Proceedings of The Edinburgh Mathematical Society. 30 (02). doi:10.1017/S0013091500028303. 
  • Leonard Lipshitz; Lee A. Rubel (1987). "A differentially algebraic replacement theorem, and analog computability". Proceedings of the American Mathematical Society. 99 (2): 367–367. doi:10.1090/S0002-9939-1987-0870803-1. 
  • Alan L. Horwitz; Lee A. Rubel (1986). "Shorter Notes: A Uniqueness Theorem for Monic Blaschke Products". Proceedings of the American Mathematical Society. 96 (1). doi:10.2307/2045676. 
  • Alan L. Horwitz; Lee A. Rubel (1986). "Restrictions on the zeroes of lagrange interpolants to analytic functions". Complex Variables and Elliptic Equations. Taylor and Francis. 6 (2): 149–157. doi:10.1080/17476938608814166. 
  • Lee A. Rubel (1986). "Generalized solutions of algebraic differential equations". Journal of Differential Equations. 62 (2): 242–251. doi:10.1016/0022-0396(86)90100-2. 
  • Lee A. Rubel (1986). "Four Counterexamples to Bloch's Principle". Proceedings of the American Mathematical Society. 98 (2): 257–257. doi:10.2307/2045694. 
  • C. Ward Henson; Lee A. Rubel (1986). "Correction to "Some Applications of Nevanlinna Theory to Mathematical Logic: Identities of Exponential Functions"". Transactions of the American Mathematical Society. 294 (1). doi:10.2307/2000139. 
  • Alan L. Horwitz; Lee A. Rubel (1986). "A uniqueness theorem for monic Blaschke products". Proceedings of the American Mathematical Society. 96 (1): 180–180. doi:10.1090/S0002-9939-1986-0813834-9. 
  • Rubel A, Lee A. (1985). "The brain as an analog computer" (PDF). Journal of theoretical neurobiology. 4 (2): 73–81. 
  • Lee A. Rubel (1985). "Barycenters of extreme points in the cone of non-negative entire functions". Rendiconti del Circolo Matematico di Palermo. 34 (2): 245–248. doi:10.1007/BF02850699. 
  • Lee A. Rubel; Michael F. Singer (1985). "A differentially algebraic elimination theorem with application to analog computability in the calculus of variations". Proceedings of the American Mathematical Society. 94 (4): 653–653. doi:10.1090/S0002-9939-1985-0792278-1. 
  • Lee A. Rubel; Michael F. Singer (1985). "A Differentially Algebraic Elimination Theorem with Application to Analog Computability in the Calculus of Variations". Proceedings of the American Mathematical Society. 94 (4). doi:10.2307/2044881. 
  • Lee A. Rubel (1984). "The motions of algebraic differential equations". Glasgow Mathematical Journal. 25 (01). doi:10.1017/S0017089500005450. 
  • C. Ward Henson; Lee A. Rubel (1984). "Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions". Transactions of the American Mathematical Society. 282 (1): 1–1. doi:10.1090/S0002-9947-1984-0728700-X. 
  • Lee A. Rubel (1984). "8.6. Badly approximable functions on curves and regions". Journal of Mathematical Sciences. 26 (5): 2226–2227. doi:10.1007/BF01221548. 
  • Lee A. Rubel (1983). "The motions of a partial differential equation". Journal of Differential Equations. 48 (2): 177–188. doi:10.1016/0022-0396(83)90048-7. 
  • Lee A. Rubel (1983). "Some research problems about algebraic differential equations". Transactions of the American Mathematical Society. 280 (1): 43–43. doi:10.1090/S0002-9947-1983-0712248-1. 
  • Lee A. Rubel (1983). "Solutions of algebraic differential equations". Journal of Differential Equations. 49 (3): 441–452. doi:10.1016/0022-0396(83)90006-2. 
  • Lee A. Rubel (1983). "Joint approximation in the unit disc". Journal of Approximation Theory. 37 (1): 44–50. doi:10.1016/0021-9045(83)90115-6. 
  • Lee A. Rubel (1983). "Internal-external factorization in Lumer's Hardy spaces". Advances in Mathematics. 50 (1): 1–26. doi:10.1016/0001-8708(83)90032-4. 
  • Lee A. Rubel (1983). "Conformal Inequivalence of Annuli and the First-Order Theory of Subgroups of PSL(2, R )". Proceedings of the American Mathematical Society. 88 (4). doi:10.2307/2045461. 
  • Charles Blair; Lee A. Rubel (1983). "A universal entire function". American Mathematical Monthly. 90 (5): 331–332. ISSN 0002-9890. doi:10.2307/2975786. 
  • Lee A. Rubel; Aristomenis Siskakis (1983). "A net of exponentials converging to a nonmeasurable function". American Mathematical Monthly. 90 (6): 394–396. ISSN 0002-9890. doi:10.2307/2975579. 
  • Lee A. Rubel (1983). "A counterexample to elimination in systems of algebraic differential equations". Mathematika. 30 (01). doi:10.1112/S0025579300010421. 
  • Leon Brown; Lee Rubel (1982). "Rational approximation and Swiss cheeses of positive area". Kodai Mathematical Journal. 5 (1): 132–133. doi:10.2996/kmj/1138036490. 
  • J. Brian Conrey; Lee A. Rubel (1982). "On the location of the zeros of the derivative of a polynomial". Proceedings of the American Mathematical Society. 86 (1): 37–37. doi:10.1090/S0002-9939-1982-0663862-8. 
  • David Challener; Lee A. Rubel (1982). "A converse to Rouche's theorem". American Mathematical Monthly. 89 (5): 302–305. ISSN 0002-9890. doi:10.2307/2321717. 
  • Robert Gervais; Lee A. Rubel (1981). "Yet another characterization of the sine function". International Journal of Mathematics and Mathematical Sciences. 4 (2): 371–381. doi:10.1155/S0161171281000239. 
  • Harold G. Diamond; Carl Pomerance; Lee Rubel (1981). "Sets on which an entire function is determined by its range". Mathematische Zeitschrift. 176 (3): 383–398. doi:10.1007/BF01214615. 
  • Lee A. Rubel (1981). "A universal differential equation". Bulletin of the American Mathematical Society. 4 (3): 345–350. doi:10.1090/S0273-0979-1981-14910-7. 
  • "Subseries of the power series for ex". American Mathematical Monthly. 87 (5): 371–376. 1980. ISSN 0002-9890. doi:10.2307/2321205. 
  • Peter Lappan; Lee Rubel (1980). "Some orderings induced by spaces of analytic functions". Michigan Mathematical Journal. 27 (3): 371–377. doi:10.1307/mmj/1029002410. 
  • Lee A. Rubel; A Schinzel; H Tverberg (1980). "On difference polynomials and hereditarily irreducible polynomials". Journal of Number Theory. 12 (2): 230–235. doi:10.1016/0022-314X(80)90058-X. 
  • Nigel Kalton; L. A. Rubel (1980). "Gap-interpolation theorems for entire functions". Journal Fur Die Reine Und Angewandte Mathematik. 1980 (316): 71–82. doi:10.1515/crll.1980.316.71. 
  • Lee A. Rubel; B Taylor (1980). "An example of a rigid partial differential equation". Journal of Differential Equations. 38 (1): 126–133. doi:10.1016/0022-0396(80)90028-5. 
  • J Posluszny; Lee A. Rubel (1979). "The motions of an ordinary differential equation". Journal of Differential Equations. 34 (2): 291–302. doi:10.1016/0022-0396(79)90011-1. 
  • D. J. Newman; L. A. Rubel (1979). "On osculatory interpolation by trigonometric polynomials". International Journal of Mathematics and Mathematical Sciences. 2 (4): 717–720. doi:10.1155/S0161171279000545. 
  • Lee A. Rubel; Richard M. Timoney (1979). "An Extremal Property of the Bloch Space". Proceedings of the American Mathematical Society. 75 (1): 45–45. doi:10.2307/2042668. 
  • C. W. Kennel; L. A. Rubel (1977). "Locally Outer Functions". Journal of the London Mathematical Society. s2-15 (3): 497–510. doi:10.1112/jlms/s2-15.3.497. 
  • Lee A. Rubel (1977). "Linear partial differential operators and mean-automorphic functions". Journal of Differential Equations. 24 (1): 26–28. doi:10.1016/0022-0396(77)90167-X. 
  • L. Rubel (1977). "An operational calculus in miniature". Applicable Analysis. 6 (4): 299–304. doi:10.1080/00036817708839162. 
  • L. A. Rubel; S. Venkateswaran (1976). "Simultaneous approximation and interpolation by entire functions". Archiv der Mathematik. 27 (1): 526–529. doi:10.1007/BF01224711. 
  • T Gamelin; J Garnett; Lee A. Rubel; A Shields (1976). "On badly approximable functions". Journal of Approximation Theory. 17 (3): 280–296. doi:10.1016/0021-9045(76)90089-7. 
  • L. A. Rubel (1976). "Harmonic analysis of harmonic functions in the plane". Proceedings of the American Mathematical Society. 54 (1): 146––146. doi:10.1090/S0002-9939-1976-0390216-1. 
  • W. S. Mcvoy; L. A. Rubel (1976). "Coherence of some rings of functions". Journal of Functional Analysis. 21 (1): 76–87. doi:10.1016/0022-1236(76)90030-6. 
  • L. A. Rubel; A. L. Shields (1976). "Badly approximable functions and interpolation by Blaschke products". Proceedings of The Edinburgh Mathematical Society. 20 (02). doi:10.1017/S0013091500010671. 
  • L. A. Rubel (1975). "Shorter Notes: An Extension of Runge's Theorem". Proceedings of the American Mathematical Society. 47 (1). doi:10.2307/2040245. 
  • Earl Berkson; Lee A. Rubel (1975). "Seven different proofs that is not separable". Rocky Mountain Journal of Mathematics. 5 (2): 237–246. doi:10.1216/RMJ-1975-5-2-237. 
  • Lee A. Rubel; A Shields; B Taylor (1975). "Mergelyan sets and the modulus of continuity of analytic functions". Journal of Approximation Theory. 15 (1): 23–40. doi:10.1016/0021-9045(75)90112-4. 
  • A. L. Shibelds; L. A. Rubel (1975). "Invariant subspaces of L 8 and H 8". Journal Fur Die Reine Und Angewandte Mathematik. 1975 (272): 32–44. doi:10.1515/crll.1975.272.32. 
  • L. A. Rubel (1975). "An extension of Runge’s theorem". Proceedings of the American Mathematical Society. 47 (1): 261––261. doi:10.1090/S0002-9939-1975-0357806-2. 
  • J. Marshall Ash; P. Erdös; L. A. Rubel (1974). "Very slowly varying functions". Aequationes Mathematicae. 10 (1): 1–9. doi:10.1007/BF01834775. 
  • Lee A. Rubel; Chung Chun Yang (1974). "Interpolation and unavoidable families of meromorphic functions". Michigan Mathematical Journal. 20 (4): 289–296. doi:10.1307/mmj/1029001145. 
  • Earl Berkson; Lee A. Rubel (1973). "Totally Abelian operators and analytic functions". Mathematische Annalen. 204 (1): 57–63. doi:10.1007/BF01431488. 
  • L. A. Rubel; A. L. Shields (1973). "Invariant subspaces of ". Bulletin of the American Mathematical Society. 79 (1): 136–138. doi:10.1090/S0002-9904-1973-13129-5. 
  • J. Marshall Ash; P. Erdos; L. A. Rubel (1972). "Very slowly varying functions". Aequationes Mathematicae. 8 (1): 191–192. doi:10.1007/BF01832746. 
  • L. A. Rubel; A. L. Shields (1972). "The failure of interior-exterior factorization in the polydisc and the ball". Tohoku Mathematical Journal. 24 (3): 409–413. doi:10.2748/tmj/1178241479. 
  • L. A. Rubel (1971). "Bounded convergence of analytic functions". Bulletin of the American Mathematical Society. 77 (1): 13–25. doi:10.1090/S0002-9904-1971-12600-9. 
  • L. A. Rubel; A. L. Shields (1970). "The second duals of certain spaces of analytic functions". Journal of the Australian Mathematical Society. 11 (03). doi:10.1017/S1446788700006649. 
  • Lee A. Rubel; J Ryff (1970). "The bounded weak-star topology and the bounded analytic functions". Journal of Functional Analysis. 5 (2): 167–183. doi:10.1016/0022-1236(70)90023-6. 
  • L. A. Rubel; B. A. Taylor (1968). "Weighted polynomial approximation on the integers". Archiv der Mathematik. 19 (5): 511–515. doi:10.1007/BF01898774. 
  • I. D. Berg; M. Rajagopalan; L. A. Rubel (1968). "Unniform Distribution in Locally Compact Abelian Groups". Transactions of the American Mathematical Society. 133 (2). doi:10.2307/1994988. 
  • L. A. Rubel; B. A. Taylor (1968). "Uniqueness theorems for analytic functions of one and of several complex variables". Mathematical Proceedings of The Cambridge Philosophical Society. 64 (01). doi:10.1017/S0305004100042584. 
  • I. D. Berg; M. Rajagopalan; L. A. Rubel (1968). "Uniform distribution in locally compact Abelian groups". Transactions of the American Mathematical Society. 133 (2): 435––435. doi:10.1090/S0002-9947-1968-0227695-6. 
  • I. D. Berg; L. A. Rubel (1968). "Densities on locally compact Abelian groups". Bulletin of the American Mathematical Society. 74 (2): 298–301. doi:10.1090/S0002-9904-1968-11929-9. 
  • L. A. Rubel; A. L. Shields (1967). "Hyperbolic Mean Automorphic Functions". Inventiones Mathematicae. 4 (4): 294–298. doi:10.1007/BF01425386. 
  • Lee A. Rubel (1967). "Entire functions by A. I. Markushevich, Russian translation by Scripta Technica, Inc.". Journal of the Franklin Institute. 283 (2): 176–177. doi:10.1016/0016-0032(67)90235-9. 
  • Lee A. Rubel (1967). "A generalized characteristic for meromorphic functions". Journal of Mathematical Analysis and Applications. 18 (3): 565–584. doi:10.1016/0022-247X(67)90047-9. 
  • L. A. Rubel; A. L. Shields (1966). "The space of bounded analytic functions on a region". 
  • L. A. Rubel; E. G. Straus (1966). "Special trigonometric series and the Riemann hypothesis". 
  • L. A. Rubel; B. A. Taylor (1966). "A Fourier series method for meromorphic and entire functions". Bulletin of the American Mathematical Society. 72 (5): 858–861. doi:10.1090/S0002-9904-1966-11588-4. 
  • L. A. Rubel; A. L. Shields (1965). "Weak topologies on the bounded holomorphic functions". Bulletin of the American Mathematical Society. 71 (2): 349–353. doi:10.1090/S0002-9904-1965-11291-5. 
  • L. A. Rubel (1964). "Uniform distribution in locally compact groups". Commentarii Mathematici Helvetici. 39 (1): 253–258. doi:10.1007/BF02566952. 
  • S. Hellerstein; L. A. Rubel (1964). "Subfields that are algebraically closed in the field of all meromorphic functions". Journal D Analyse Mathematique. 12 (1): 105–111. doi:10.1007/BF02807430. 
  • L. A. Rubel (1964). "On separation by harmonic functions". Acta Mathematica Hungarica. 15 (1): 175–176. doi:10.1007/BF01897035. 
  • L. A. Rubel (1964). "Bounded by Polynomial Approximation". Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis. 1 (1). doi:10.1137/0701012. 
  • L. A. Rubel; A. L. Shields (1964). "Bounded approximation by polynomials". Acta Mathematica. 112 (1): 145–162. doi:10.1007/BF02391768. 
  • L. A. Rubel (1964). "A complex-variables proof of Hölder’s inequality". Proceedings of the American Mathematical Society. 15 (6). doi:10.1090/S0002-9939-1964-0174682-4. 
  • R. P. Jerrard; L. A. Rubel (1963). "On the curvature of the level lines of a harmonic function". Proceedings of the American Mathematical Society. 14 (1): 29––29. doi:10.1090/S0002-9939-1963-0142770-3. 
  • L. A. Rubel; A. L. Shields (1963). "Bounded approximation by polynomials". Bulletin of the American Mathematical Society. 69 (4): 591–594. doi:10.1090/S0002-9904-1963-11009-5. 
  • L. A. Rubel (1963). "A Pathological Lebesgue-Measurable Function". Journal of the London Mathematical Society. s1-38 (1): 1–4. doi:10.1112/jlms/s1-38.1.1. 
  • L. A. Rubel (1963). "A Fourier series method for entire functions". Duke Mathematical Journal. 30 (3): 437–442. doi:10.1215/S0012-7094-63-03047-3. 
  • Marvin Gaer; Lee Rubel. The fractional derivative and entire functions. doi:10.1007/BFb0067104. 
  • M. Kadec; James Langley; Lee Rubel; A. Goldberg; A. È. Erëmenko; I. Ostrovskii; B. Ya. Levin; S. Ya. Havinson; V. Azarin; A. È. Enëmenko; A. Gris?in. Entire, meromorphic and subharmonic functions. doi:10.1007/BFb0072194. 
  • Lars Hedberg; Thomas Kriete; Harry Dym; Arne Stray; V. Belyi; André Boivin; Paul Gauthier; J. Brennan; Thomas Bagby; A. Gonchar; Hans Wallin; Lee Rubel; G. Henkin; Donald Marshall; W. Hayman; A. Vitushkin; M. Mel'nikov; L. Ivanov; Josef Král; V. Maz'Ya; Peter Jones; David Adams. Approximation and Capacities. doi:10.1007/BFb0072191. 
  • L. Rubel. A survey of a fourier series method for meromorphic functions. doi:10.1007/BFb0065787. 
  • L. A. Rubel; Chung-Chun Yang. Values shared by an entire function and its derivative. doi:10.1007/BFb0096830. 
  • Jeong H. Kim; Lee A. Rubel. "Integer Translation Of Meromorphic Functions". 
  • Alexandre Eremenko; L. A. Rubel. "On The Zero Sets Of Certain Entire Functions". 

References[edit]

  1. ^ a b Wolfgang Saxon (April 13, 1995). "Lee A. Rubel, 66, Computer Scientist And Mathematician". Retrieved 4 November 2012. 
  2. ^ Mills, J.W.; Parker, M.; Himebaugh, B.; Shue, C.; Kopecky, B.; Weileman, C. (2006). Empty space computes: The evolution of an unconventional supercomputer. ACM. pp. 115–126. 
  3. ^ Mills, J.W. (2008). The nature of the extended analog computer. Physica D: Nonlinear Phenomena. 237. Elsevier. pp. 1235–1256. doi:10.1016/j.physd.2008.03.041. 
  4. ^ Genealogy Project. "Lee Albert Rubel". North Dakota State University and American Mathematical Society. Retrieved 3 November 2012. 
  5. ^ "Mathematics People" (PDF). American Mathematical Society. 42 (7): 780.