# Lerch zeta function

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta-function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after the Czech mathematician Mathias Lerch [1].

## Definition

The Lerch zeta function is given by

${\displaystyle L(\lambda ,\alpha ,s)=\sum _{n=0}^{\infty }{\frac {e^{2\pi i\lambda n}}{(n+\alpha )^{s}}}.}$

A related function, the Lerch transcendent, is given by

${\displaystyle \Phi (z,s,\alpha )=\sum _{n=0}^{\infty }{\frac {z^{n}}{(n+\alpha )^{s}}}.}$

The two are related, as

${\displaystyle \,\Phi (e^{2\pi i\lambda },s,\alpha )=L(\lambda ,\alpha ,s).}$

## Integral representations

An integral representation is given by

${\displaystyle \Phi (z,s,a)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-at}}{1-ze^{-t}}}\,dt}$

for

${\displaystyle \Re (a)>0\wedge \Re (s)>0\wedge z<1\vee \Re (a)>0\wedge \Re (s)>1\wedge z=1.}$

A contour integral representation is given by

${\displaystyle \Phi (z,s,a)=-{\frac {\Gamma (1-s)}{2\pi i}}\int _{0}^{(+\infty )}{\frac {(-t)^{s-1}e^{-at}}{1-ze^{-t}}}\,dt}$

for

${\displaystyle \Re (a)>0\wedge \Re (s)<0\wedge z<1}$

where the contour must not enclose any of the points ${\displaystyle t=\log(z)+2k\pi i,k\in Z.}$

A Hermite-like integral representation is given by

${\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {z^{t}}{(a+t)^{s}}}\,dt+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt}$

for

${\displaystyle \Re (a)>0\wedge |z|<1}$

and

${\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {\log ^{s-1}(1/z)}{z^{a}}}\Gamma (1-s,a\log(1/z))+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt}$

for

${\displaystyle \Re (a)>0.}$

## Special cases

The Hurwitz zeta function is a special case, given by

${\displaystyle \,\zeta (s,\alpha )=L(0,\alpha ,s)=\Phi (1,s,\alpha ).}$

The polylogarithm is a special case of the Lerch Zeta, given by

${\displaystyle \,{\textrm {Li}}_{s}(z)=z\Phi (z,s,1).}$

The Legendre chi function is a special case, given by

${\displaystyle \,\chi _{n}(z)=2^{-n}z\Phi (z^{2},n,1/2).}$

The Riemann zeta function is given by

${\displaystyle \,\zeta (s)=\Phi (1,s,1).}$

The Dirichlet eta function is given by

${\displaystyle \,\eta (s)=\Phi (-1,s,1).}$

## Identities

For λ rational, the summand is a root of unity, and thus ${\displaystyle L(\lambda ,\alpha ,s)}$ may be expressed as a finite sum over the Hurwitz zeta-function.

Various identities include:

${\displaystyle \Phi (z,s,a)=z^{n}\Phi (z,s,a+n)+\sum _{k=0}^{n-1}{\frac {z^{k}}{(k+a)^{s}}}}$

and

${\displaystyle \Phi (z,s-1,a)=\left(a+z{\frac {\partial }{\partial z}}\right)\Phi (z,s,a)}$

and

${\displaystyle \Phi (z,s+1,a)=-\,{\frac {1}{s}}{\frac {\partial }{\partial a}}\Phi (z,s,a).}$

## Series representations

A series representation for the Lerch transcendent is given by

${\displaystyle \Phi (z,s,q)={\frac {1}{1-z}}\sum _{n=0}^{\infty }\left({\frac {-z}{1-z}}\right)^{n}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}(q+k)^{-s}.}$

(Note that ${\displaystyle {\tbinom {n}{k}}}$ is a binomial coefficient.)

The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.

A Taylor series in the first parameter was given by Erdélyi. It may be written as the following series, which is valid for

${\displaystyle |\log(z)|<2\pi ;s\neq 1,2,3,\dots ;a\neq 0,-1,-2,\dots }$
${\displaystyle \Phi (z,s,a)=z^{-a}\left[\Gamma (1-s)\left(-\log(z)\right)^{s-1}+\sum _{k=0}^{\infty }\zeta (s-k,a){\frac {\log ^{k}(z)}{k!}}\right]}$

B. R. Johnson (1974). "Generalized Lerch zeta-function". Pacific J. Math. 53 (1): 189–193.

If s is a positive integer, then

${\displaystyle \Phi (z,n,a)=z^{-a}\left\{\sum _{{k=0} \atop k\neq n-1}^{\infty }\zeta (n-k,a){\frac {\log ^{k}(z)}{k!}}+\left[\psi (n)-\psi (a)-\log(-\log(z))\right]{\frac {\log ^{n-1}(z)}{(n-1)!}}\right\},}$

where ${\displaystyle \psi (n)}$ is the digamma function.

A Taylor series in the third variable is given by

${\displaystyle \Phi (z,s,a+x)=\sum _{k=0}^{\infty }\Phi (z,s+k,a)(s)_{k}{\frac {(-x)^{k}}{k!}};|x|<\Re (a),}$

where ${\displaystyle (s)_{k}}$ is the Pochhammer symbol.

Series at a = -n is given by

${\displaystyle \Phi (z,s,a)=\sum _{k=0}^{n}{\frac {z^{k}}{(a+k)^{s}}}+z^{n}\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {(a+n)^{m}}{m!}};\ a\rightarrow -n}$

A special case for n = 0 has the following series

${\displaystyle \Phi (z,s,a)={\frac {1}{a^{s}}}+\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {a^{m}}{m!}};|a|<1,}$

where ${\displaystyle \operatorname {Li} _{s}(z)}$ is the polylogarithm.

An asymptotic series for ${\displaystyle s\rightarrow -\infty }$

${\displaystyle \Phi (z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[2k\pi i-\log(z)]^{s-1}e^{2k\pi ai}}$

for ${\displaystyle |a|<1;\Re (s)<0;z\notin (-\infty ,0)}$ and

${\displaystyle \Phi (-z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai}}$

for ${\displaystyle |a|<1;\Re (s)<0;z\notin (0,\infty ).}$

An asymptotic series in the incomplete gamma function

${\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {1}{z^{a}}}\sum _{k=1}^{\infty }{\frac {e^{-2\pi i(k-1)a}\Gamma (1-s,a(-2\pi i(k-1)-\log(z)))}{(-2\pi i(k-1)-\log(z))^{1-s}}}+{\frac {e^{2\pi ika}\Gamma (1-s,a(2\pi ik-\log(z)))}{(2\pi ik-\log(z))^{1-s}}}}$

for ${\displaystyle |a|<1;\Re (s)<0.}$

## Software

The Lerch transcendent is implemented as LerchPhi in Maple.