let-7 microRNA precursor

From Wikipedia, the free encyclopedia
Jump to: navigation, search
let-7 microRNA precursor
RF00027.jpg
Identifiers
Symbol let-7
Rfam RF00027
miRBase MI0000001
miRBase family MIPF0000002
Other data
RNA type Gene; miRNA
Domain(s) Eukaryota
GO 0035195 0035068
SO 0001244

The Let-7 microRNA precursor was identified from a study of developmental timing in C. elegans,[1] and was later shown to be part of a much larger class of non-coding RNAs termed microRNAs.[2] miR-98 microRNA precursor from human is a let-7 family member. Let-7 miRNAs have now been predicted or experimentally confirmed in a wide range of species (MIPF0000002[3]). miRNAs are initially transcribed in long transcripts (up to several hundred nucleotides) called primary miRNAs (pri-miRNAs), which are processed in the nucleus by Drosha and Pasha to hairpin structures of about 70 nucleotide. These precursors (pre-miRNAs) are exported to the cytoplasm by exportin5, where they are subsequently processed by the enzyme Dicer to a ~22 nucleotide mature miRNA. The involvement of Dicer in miRNA processing demonstrates a relationship with the phenomenon of RNA interference.

Genomic Locations[edit]

In human genome, the cluster let-7a-1/let-7f-1/let-7d is inside the region B at 9q22.3, with the defining marker D9S280-D9S1809. One minimal LOH (loss of heterozygosity) region, between loci D11S1345-D11S1316, contains the cluster miR-125b1/let-7a-2/miR-100. The cluster miR-99a/let-7c/miR-125b-2 is in a 21p11.1 region of HD (homozygous deletions). The cluster let-7g/miR-135-1 is in region 3 at 3p21.1-p21.2.[4]

The let-7 family[edit]

The lethal-7 (let-7) gene was first discovered in the nematode as a key developmental regulator and became one of the first two known microRNAs (the other one is lin-4).[5] Soon, let-7 was found in fruit fly, and identified as the first known human miRNA by a BLAST (basic local alignment search tool) research.[6] The mature form of let-7 family members is highly conserved across species.

In C.elegans[edit]

In C.elegans, the let-7 family consists of genes encoding nine miRNAs sharing the same seed sequence.[7] Among them, let-7, mir-84, mir-48 and mir-241 are involved in C.elegans heterochronic pathway, sequentially controlling developmental timing of larva transitions.[8] Most animals with loss-of-function let-7 mutation burst through their vulvas and die, and therefore the mutant is lethal (let).[5] The mutants of other let-7 family members have a radio-resistant phenotype in vulval cells, which may be related to their ability to repress RAS.[9]

In Drosophila[edit]

There is only one single let-7 gene in the Drosophila genome, which has the identical mature sequence to the one in C.elegans.[10] The role of let-7 has been demonstrated in regulating the timing of neuromuscular junction formation in the abdomen and cell-cycle in the wing.[11] Furthermore, the expression of pri-, pre- and mature let-7 have the same rhythmic pattern with the hormone pulse before each cuticular molt in Drosophila.[12]

In vertebrates[edit]

The let-7 family has a lot more members in vertebrates than in C.elegans and Drosophila.[10] And the sequences, expression timing, as well as genomic clustering of these miRNAs members are all conserved across species.[13] The direct role of let-7 family in vertebrate development has not been clearly shown as in less complex organisms, yet the expression pattern of let-7 family is indeed temporal during developmental processes.[14] Given that the expression levels of let-7 members are significantly low in human cancers and cancer stem cells,[15] the major function of let-7 genes may be to promote terminal differentiation in development and tumor suppression.

Regulation of expression[edit]

Although the levels of mature let-7 members are undetectable in undifferentiated cells, the primary transcripts and the hairpin precursors of let-7 are present in these cells.[16] It indicates that the mature let-7 miRNAs may be regulated in a post-transcriptional manner.

By pluripotency promoting factor LIN28[edit]

As one of the four genes involved in induced pluripotent stem (iPS) cells reprogramming,[17] LIN28 expression is reciprocal to that of mature let-7.[18] LIN28 selectively binds the primary and precursor forms of let-7, and inhibits the processing of pri-let-7 to form the hairpin precursor.[19] This binding is facilitated by the conserved loop sequence of primary let-7 family members and RNA-binding domains of LIN28 proteins.[20] On the other hand, let-7 miRNAs in mammals have been shown to regulate LIN28,[21] which implies that let-7 might enhance its own level by repressing LIN28, its negative regulator.[22]

In autoregulatory loop with MYC[edit]

Expression of let-7 members is controlled by MYC binding to their promoters. The levels of let-7 have been reported to decrease in models of MYC-mediated tumorigenesis, and to increase when MYC is inhibited by chemicals.[23] In a twist, there are let-7-binding sites in MYC 3' untranslated region(UTR) according to bioinformatic analysis, and let-7 overexpression in cell culture decreased MYC mRNA levels.[24] Therefore, there is a double-negative feedback loop between MYC and let-7. Furthermore, let-7 could lead to IMP1(/insulin-like growth factor II mRNA-binding protein) depletion, which destabilizes MYC mRNA, thus forming an indirect regulatory pathway.[25]

Targets of let-7[edit]

Oncogenes: RAS, HMGA2[edit]

Let-7 has been demonstrated to be a direct regulator of RAS expression in human cells[26] All the three RAS genes in human, K-, N-, and H-, have the predicted let-7 binding sequences in their 3'UTRs. In lung cancer patient samples, expression of RAS and let-7 showed reciprocal pattern, which has low let-7 and high RAS in cancerous cells, and high let-7 and low RAS in normal cells. Another oncogene, high mobility group A2 (HMGA2), has also been identified as a target of let-7. Let-7 directly inhibits HMGA2 by binding to its 3'UTR.[27] Removal of let-7 binding site by 3'UTR deletion cause overexpression of HMGA2 and formation of tumor.

Cell cycle, proliferation, and apoptosis regulators[edit]

Microarray analyses revealed many genes regulating cell cycle and cell proliferation that are responsive to alteration of let-7 levels, including cyclin A2, CDC34, Aurora A and B kinases (STK6 and STK12), E2F5, and CDK8, among others.[26] Subsequent experiments confirmed the direct effects of some of these genes, such as CDC25A and CDK6.[28] Let-7 also inhibits several components of DNA replication machinery, transcription factors, even some tumor suppressor genes and checkpoint regulators.[26]Apoptosis is regulated by let-7 as well, through Casp3, Bcl2, Map3k1 and Cdk5 modulation.[29]

Immunity[edit]

Let-7 has been implicated in post-transcriptional control of innate immune responses to pathogenic agents. Macrophages stimulated with live bacteria or purified microbial components down-regulate the expression of several members of the let-7 microRNA family to relieve repression of immune-modulatory cytokines IL-6 and IL-10.[30][31] Let-7 has also been implicated in the negative regulation of TLR4, the major immune receptor of microbial lipopolysaccharide and down-regulation of let-7 both upon microbial and protozoan infection might elevate TLR4 signalling and expression.[32][33] Let-7 has furthermore been reported to regulate the production of cytokine IL-13 by T lymphocytes during allergic airway inflammation thus linking this microRNA to adaptive immunity as well.[34] Down-modulation of let-7 negative regulator Lin28b in human T lymphocytes is believed to accrue during early neonate development to reprogramm the immune system towards defense.[35]

Potential clinical use in cancer[edit]

Given the prominent phenotype of cell overproliferation and undifferentiation by let-7 loss-of-function in nematodes, and the role of its targets on cell destiny determination, let-7 is closely associated with human cancer and acts as a tumor suppressor.

Diagnosis[edit]

Numerous reports have shown that the expression levels of let-7 are frequently low and the chromosomal clusters of let-7 are often deleted in many cancers.[4] Let-7 is expressed at higher levels in more differentiated tumors, which also have lower levels of activated oncogenes such as RAS and HMGA2. Therefore, expression levels of let-7 could be prognostic markers in several cancers associated with differentiation stages.[36] In lung cancer, for example, reduced expression of let-7 is significantly correlated with reduced postoperative survival.[37] The expression of let-7b and let-7g microRNAs are significantly associated with overall survival in 1262 breast cancer patients.[38]

Therapy[edit]

Let-7 is also a very attractive potential therapeutic that can prevent tumorigenesis and angiogenesis, typically in cancers that underexpress let-7.[39] Lung cancer, for instance, has several key oncogenic mutations including p53, RAS and MYC, some of which may directly correlate with the reduced expression of let-7, and may be repressed by introduction of let-7.[37] Intranasal administration of let-7 has already been found effective in reducing tumor growth in a transgenic mouse model of lung cancer.[40] Similar restoration of let-7 was also shown to inhibit cell proliferation in breast, colon and hepatic cancers, lymphoma, and uterine leiomyoma.[41]

References[edit]

  1. ^ Rougvie, AE (2001). "Control of developmental timing in animals". Nature Reviews Genetics. 2 (9): 690–701. doi:10.1038/35088566. PMID 11533718. 
  2. ^ Ambros, V (2001). "microRNAs: tiny regulators with great potential". Cell. 107 (7): 823–826. doi:10.1016/S0092-8674(01)00616-X. PMID 11779458. 
  3. ^ MIPF0000002
  4. ^ a b Calin; Sevignani, C; Dumitru, CD; Hyslop, T; Noch, E; Yendamuri, S; Shimizu, M; Rattan, S; Bullrich, F; et al. (2003). "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers". PNAS. 101 (9): 2999–3004. Bibcode:2004PNAS..101.2999C. doi:10.1073/pnas.0307323101. PMC 365734Freely accessible. PMID 14973191. 
  5. ^ a b Reinhart B.J.; et al. (2000). "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans". Nature. 403 (6772): 901–906. Bibcode:2000Natur.403..901R. doi:10.1038/35002607. PMID 10706289. 
  6. ^ Pasquinelli A.E.; et al. (2000). "Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA". Nature. 408 (6808): 86–89. doi:10.1038/35040556. PMID 11081512. 
  7. ^ Lim L.P.; et al. (2003). "The microRNAs of Caenorhabditis elegans". Genes Dev. 17 (8): 991–1008. doi:10.1101/gad.1074403. PMC 196042Freely accessible. PMID 12672692. 
  8. ^ Moss E.G. (2007). "Heterochronic genes and the nature of developmental time". Curr. Biol. 17: R425–R434. doi:10.1016/j.cub.2007.03.043. 
  9. ^ Weidhaas J.B.; et al. (2007). "MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy". Cancer Res. 67 (23): 11111–11116. doi:10.1158/0008-5472.CAN-07-2858. PMID 18056433. 
  10. ^ a b Lagos-Quintana M.; et al. (2001). "Identification of novel genes coding for small expressed RNAs". Science. 294 (5543): 853–858. Bibcode:2001Sci...294..853L. doi:10.1126/science.1064921. PMID 11679670. 
  11. ^ Caygill E.E.; Johnston L.A. (2008). "Temporal Regulation of Metamorphic Processes in Drosophila by the let-7 and miR-125 Heterochronic MicroRNAs". Curr. Biol. 18 (13): 943–950. doi:10.1016/j.cub.2008.06.020. PMC 2736146Freely accessible. PMID 18571409. 
  12. ^ Thummel C.S. (2001). "Molecular mechanisms of developmental timing in C. elegans and Drosophila". Dev. Cell. 1 (4): 453–465. doi:10.1016/S1534-5807(01)00060-0. PMID 11703937. 
  13. ^ Rodriguez A.; et al. (2004). "Identification of Mammalian microRNA Host Genes and Transcription Units". Genome Res. 14 (10A): 1902–1910. doi:10.1101/gr.2722704. PMC 524413Freely accessible. PMID 15364901. 
  14. ^ Kloosterman W.P.; Plasterk R.H. (2006). "The diverse functions of microRNAs in animal development and disease". Dev. Cell. 11 (4): 441–450. doi:10.1016/j.devcel.2006.09.009. PMID 17011485. 
  15. ^ Esquela-Kerscher A.; Slack F.J. (2006). "Oncomirs – microRNAs with a role in cancer". Nature Reviews Cancer. 6 (4): 259–269. doi:10.1038/nrc1840. PMID 16557279. 
  16. ^ Thomson J.M.; et al. (2006). "Extensive post-transcriptional regulation of microRNAs and its implications for cancer". Genes Dev. 20 (16): 2202–2207. doi:10.1101/gad.1444406. PMC 1553203Freely accessible. PMID 16882971. 
  17. ^ Yu J.; et al. (2007). "Induced pluripotent stem cell lines derived from human somatic cells". Science. 318 (5858): 1917–1920. Bibcode:2007Sci...318.1917Y. doi:10.1126/science.1151526. PMID 18029452. 
  18. ^ Viswanathan S.R.; et al. (2008). "Selective blockade of microRNA processing by Lin-28". Science. 320 (5872): 97–100. Bibcode:2008Sci...320...97V. doi:10.1126/science.1154040. PMC 3368499Freely accessible. PMID 18292307. 
  19. ^ Newman M.A.; et al. (2008). "Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing". RNA. 14: 1539–49. doi:10.1261/rna.1155108. PMC 2491462Freely accessible. PMID 18566191. 
  20. ^ Piskounova E.; et al. (2008). "Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28". J. Biol. Chem. 283: 21310–21314. doi:10.1074/jbc.C800108200. PMID 18550544. 
  21. ^ Moss E.G.; Tang L. (2003). "Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites". Dev. Biol. 258 (2): 432–442. doi:10.1016/S0012-1606(03)00126-X. PMID 12798299. 
  22. ^ Ali, P. S.; Ghoshdastider, U; Hoffmann, J; Brutschy, B; Filipek, S (2012). "Recognition of the let-7g miRNA precursor by human Lin28B". FEBS Letters. 586 (22): 3986–90. doi:10.1016/j.febslet.2012.09.034. PMID 23063642. 
  23. ^ Chang T.C.; et al. (2007). "Widespread microRNA repression by Myc contributes to tumorigenesis". Nat. Genet. 40 (1): 43–50. doi:10.1038/ng.2007.30. PMC 2628762Freely accessible. PMID 18066065. 
  24. ^ Koscianska E.; et al. (2007). "Prediction and preliminary validation of oncogene regulation by miRNAs". BMC Mol. Biol. 8: 79. doi:10.1186/1471-2199-8-79. PMC 2096627Freely accessible. PMID 17877811. 
  25. ^ Ioannidis P.; et al. (2005). "CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells". J. Biol. Chem. 280 (20): 20086–20093. doi:10.1074/jbc.M410036200. PMID 15769738. 
  26. ^ a b c Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005). "RAS is regulated by the let-7 microRNA family". Cell. 120 (5): 635–47. doi:10.1016/j.cell.2005.01.014. PMID 15766527. 
  27. ^ Mayr C.; et al. (2007). "Disrupting the Pairing Between let-7 and Hmga2 Enhances Oncogenic Transformation". Science. 315 (5818): 1576–1579. Bibcode:2007Sci...315.1576M. doi:10.1126/science.1137999. PMC 2556962Freely accessible. PMID 17322030. 
  28. ^ Johnson C.D.; et al. (2007). "The let-7 microRNA represses cell proliferation pathways in human cells". Cancer Res. 67 (16): 7713–7722. doi:10.1158/0008-5472.CAN-07-1083. PMID 17699775. 
  29. ^ He YJ, Guo L, D ZH. (2009) Let-7 and mir-24 in uvb-induced apoptosis [Chinese]. Zhonghua Fang She Yi Xue Yu Fang Hu Za Zhi. 29, 234–6.
  30. ^ Schulte LN; et al. (2011). "Analysis of the host miRNA response to Salmonella uncovers the control of major cytokines by the let-7 family". The EMBO Journal. 30 (10): 1977–1989. doi:10.1038/emboj.2011.94. PMC 3098495Freely accessible. PMID 21468030. 
  31. ^ Liu Y; et al. (2011). "MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation". FEBS Letters. 585 (12): 1963–1968. doi:10.1016/j.febslet.2011.05.029. PMID 21609717. 
  32. ^ Hu G; et al. (2009). "MicroRNA-98 and let-7 Confer Cholangiocyte Expression of Cytokine-Inducible Src Homology 2-Containing Protein in Response to Microbial Challenge". The Journal of Immunology. 183 (3): 1617–1624. doi:10.4049/jimmunol.0804362. PMC 2906382Freely accessible. PMID 19592657. 
  33. ^ Androulidaki A; et al. (2009). "Akt1 controls macrophage response to LPS by regulating microRNAs". Immunity. 31 (2): 220–231. doi:10.1016/j.immuni.2009.06.024. PMC 2865583Freely accessible. PMID 19699171. 
  34. ^ Kumar M; et al. (2011). "Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation". The Journal of Allergy and Clinical Immunology. 128 (5): 1077–1085. doi:10.1016/j.jaci.2011.04.034. PMID 21616524. 
  35. ^ Yuan J; et al. (2012). "Lin28b Reprograms Adult Bone Marrow Hematopoietic Progenitors to Mediate Fetal-Like Lymphopoiesis". Science. 335 (6073): 1195–12000. Bibcode:2012Sci...335.1195Y. doi:10.1126/science.1216557. PMC 3471381Freely accessible. PMID 22345399. 
  36. ^ Shell S; Park SM; Radjabi AR; et al. (2007). "Let-7 expression defines two differentiation stages of cancer". Proc Natl Acad Sci U S A. 104 (27): 11400–5. Bibcode:2007PNAS..10411400S. doi:10.1073/pnas.0704372104. PMC 2040910Freely accessible. PMID 17600087. 
  37. ^ a b Takamizawa J; Konishi H; Yanagisawa K; et al. (2004). "Reduced expression of the let-7 micrornas in human lung cancers in association with shortened postoperative survival". Cancer Res. 64 (11): 3753–6. doi:10.1158/0008-5472.CAN-04-0637. PMID 15172979. 
  38. ^ Lánczky, András; Nagy, Ádám; Bottai, Giulia; Munkácsy, Gyöngyi; Szabó, András; Santarpia, Libero; Győrffy, Balázs (2016-12-01). "miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients". Breast Cancer Research and Treatment. 160 (3): 439–446. doi:10.1007/s10549-016-4013-7. ISSN 1573-7217. PMID 27744485. 
  39. ^ Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007). "Role of Dicer and Drosha for endothelial microrna expression and angiogenesis". Circ Res. 101 (1): 59–68. doi:10.1161/CIRCRESAHA.107.153916. PMID 17540974. 
  40. ^ Esquela; Kerscher A; Trang P; Wiggins JF; et al. (2008). "The let-7 microrna reduces tumor growth in mouse models of lung cancer". Cell Cycle. 7 (6): 759–64. doi:10.4161/cc.7.6.5834. PMID 18344688. 
  41. ^ Barh D.; Malhotra R.; Ravi B.; Sindhurani P. (2010). "MicroRNA let-7: an emerging next-generation cancer therapeutic". CURRENT ONCOLOGY. 17: 70–80. doi:10.3747/co.v17i1.356. PMC 2826782Freely accessible. PMID 20179807. 

Further reading[edit]

External links[edit]