List of conjectures by Paul Erdős

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The prolific mathematician Paul Erdős and his various collaborators made many famous mathematical conjectures, over a wide field of subjects, and in many cases Erdős offered monetary rewards for solving them.

Unsolved[edit]

Solved[edit]

See also[edit]

References[edit]

  1. ^ Erdős, P.; Hajnal, A. (1989), "Ramsey-type theorems", Combinatorics and complexity (Chicago, IL, 1987), Discrete Appl. Math., 25 (1–2): 37–52, doi:10.1016/0166-218X(89)90045-0, MR 1031262.
  2. ^ [1]
  3. ^ Hajnal, A.; Szemerédi, E. (1970), "Proof of a conjecture of P. Erdős", Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, pp. 601–623, MR 0297607.
  4. ^ Sárközy, A. (1978), "On difference sets of sequences of integers. II", Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, 21: 45–53 (1979), MR 0536201.
  5. ^ Deza, M. (1974), "Solution d'un problème de Erdős-Lovász", Journal of Combinatorial Theory, Series B (in French), 16 (2): 166–167, doi:10.1016/0095-8956(74)90059-8, MR 0337635.
  6. ^ da Silva, Dias; A., J.; Hamidoune, Y. O. (1994), "Cyclic spaces for Grassmann derivatives and additive theory", Bulletin of the London Mathematical Society, 26 (2): 140–146, doi:10.1112/blms/26.2.140.
  7. ^ Croot, Ernest S., III (2000), Unit Fractions, Ph.D. thesis, University of Georgia, Athens. Croot, Ernest S., III (2003), "On a coloring conjecture about unit fractions", Annals of Mathematics, 157 (2): 545–556, arXiv:math.NT/0311421, doi:10.4007/annals.2003.157.545.
  8. ^ Luca, Florian (2001), "On a conjecture of Erdős and Stewart", Mathematics of Computation, 70 (234): 893–896, doi:10.1090/S0025-5718-00-01178-9, MR 1677411.
  9. ^ Sapozhenko, A. A. (2003), "The Cameron-Erdős conjecture", Doklady Akademii Nauk, 393 (6): 749–752, MR 2088503. Green, Ben (2004), "The Cameron-Erdős conjecture", Bulletin of the London Mathematical Society, 36 (6): 769–778, arXiv:math.NT/0304058, doi:10.1112/S0024609304003650, MR 2083752.
  10. ^ Aharoni, Ron; Berger, Eli (2009), "Menger's Theorem for infinite graphs", Inventiones Mathematicae, 176 (1): 1–62, arXiv:math/0509397, Bibcode:2009InMat.176....1A, doi:10.1007/s00222-008-0157-3.
  11. ^ Guth, l.; Katz, N. H. (2010), On the Erdős distinct distance problem on the plane, arXiv:1011.4105, Bibcode:2010arXiv1011.4105G.

External links[edit]